低温适应下锯缘青蟹肌肉及其细胞膜脂肪酸组成的变化
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家“863"重大专项(2002AA603013)


Changes of fatty acid composition in muscle and muscle cell membrane of Scylla serrata under low temperature adaptation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究主要采用生物化学方法对低温适应3周的锯缘青蟹肌肉及肌细胞膜脂肪酸组成进行测定,结果显示,肌肉中脂肪酸C16:0随饲养温度降低而降低,5 ℃组显著低于27 ℃组(P<0.05);C18:0却在5 ℃组显著高于27 ℃组(P<0.05);C20:5随着饲养温度降低而升高,5 ℃和10 ℃组显著高于27 ℃组(P<0.05)。∑C16随饲养温度的降低而降低,5 ℃组显著低于27 ℃组(P<0.01);∑C20却随饲养温度的降低而升高,5 ℃和10 ℃组显著高于27 ℃组(P<0.05); EPA+DHA随饲养温度降低而升高,5 ℃和10 ℃组显著高于27 ℃组(P<0.05),而EPA/DHA仅5 ℃组显著高于27 ℃组(P<0.01)。低温适应下锯缘青蟹肌肉细胞膜脂肪酸C18:2显著升高(P<0.01或P<0.05),但随养殖温度的降低逐渐降低;低温适应下C18:1降低,在5 ℃组 显著降低(P<0.05);C18:0低温适应下也显著降低(P<0.01);C20:5低温适应下上升,但仅在15 ℃适应下显著上升(P<0.05)。C22:6低温环境下降低,在5 ℃和10 ℃组显著下降(P<0.05)。C20:1,C20:4和C20:3在低温环境下增加,仅5 ℃组显著高于27 ℃组(P<0.01或P<0.05),肌肉细胞膜中∑C18低温环境下降低,而∑C20低温下增加,并且均在5 ℃组出现显著性差异(P<0.01)。∑C22低温适应下降低,仅10 ℃下降明显(P<0.05),∑SFA低温环境下显著降低(P<0.05或P<0.01);∑UFA低温环境下显著升高(P<0.05或P<0.01),低温适应下饱和指数∑SFA/∑UFA显著下降(P<0.05,或P<0.01);其中不饱和脂肪酸∑UFA低温适应下的升高主要是∑PUFA-ω6升高,EPA+DHA低温适应下无显著性变化(P>0.05),但EPA/DHA仅5 ℃组显著上升(P<0.05)。上述结果表明低温适应下肌肉及肌细胞膜脂肪酸组成的变化是处于不断合成和转化的动态之中。与肌肉组织相比较,肌细胞膜脂肪酸组成变化较大,其脂肪酸饱和指数在低温适应下显著下降。细胞膜对低温环境的敏感反应说明低温适应和生理稳态维持过程中细胞膜起着重要的生物学作用。

    Abstract:

    Mud crab, Scylla serrata, is an important commercial crustacean living in estuarine waters. Studies on fatty acids composition changes in muscle and cell membrane of S. serrata under low temperature adaptation play an important role in understanding physiological adaptation at low temperature. In this study, S. serrata were forced to experience 3week adaptation at different low temperatures. Biochemistry methods were used to determine the content of various fatty acids in muscle as well as cell membrane. For muscle, compared with 27 ℃, C16:0 decreased gradually with the decrease of temperature, and decreased significantly at 5 ℃ (P<0.05); while C18:0 increased significantly at 5 ℃(P<0.05);C20:5 increased gradually with the decrease of temperature, and was significantly higher at 5 ℃ and 10 ℃(P<0.05).∑C16 decreased gradually with the decrease of temperature, and decreased significantly at 5 ℃(P<0.01);∑C20 increased gradually with the decrease of temperature, and increased significantly at 5 ℃ and 10 ℃(P<0.05). EPA+DHA increased gradually with the increase of temperature, and increased significantly at 5 ℃ and 10 ℃ (P<0.05), while EPA/DHA increased significantly only at 5 ℃(P<0.01). For cell membrane of muscle, compared with 27 ℃, C18:2 increased significantly under low temperature adaptation (P<0.01,P<0.05), and decreased gradually with the decrease of temperature. C18:1 decreased at low temperature, and decreased significantly at 5 ℃(P<0.05). C18:0 decreased significantly under low temperature adaptation (P<0.01); C20:5 increased under low temperature adaptation, and increased significantly only at 15 ℃(P<0.05). C22:6 decreased at low temperature, and decreased significantly at 5 ℃ and 10 ℃ (P<0.05). C20:1, C20:4 and C20:3 increased under low temperature adaptation, and significantly increased at 5 ℃(P<0.01 or P<0.05). ∑C18 decreased at low temperature; while ∑C20 increased significantly at 5 ℃ (P<0.01). However, ∑C22 decreased at low temperature and only decreased significantly at 10 ℃(P<0.05). Under low temperature adaptation, ∑SFA decreased significantly (P<0.05,P<0.01), while ∑UFA increased significantly(P<0.05,P<0.01), thus ∑SFA/∑UFA decreased significantly (P<0.05,P0.01). Increase of ∑UFA was due to increase of ∑PUFAω6. EPA+DHA had no significant change (P>0.05), but EPA/DHA increased significantly only at 5 ℃ (P<0.05). In conclusion, changes of fatty acid composition in muscle and muscle cell membrane of S. serrata are dynamic during low temperature adaptation, in which desaturation, lengthening and transformation happened continuously in short chain fatty acids. Compared with muscle tissue, fatty acids changes in cell membrane are much more, and its saturated index decreased significantly at low temperature. Changes of fatty acids in cell membrane indicated that cell membrane played an important role in maintaining the physiological homostasis under low temperature condition.

    参考文献
    相似文献
    引证文献
引用本文

孔祥会.低温适应下锯缘青蟹肌肉及其细胞膜脂肪酸组成的变化[J].水产学报,2006,30(5):603~610

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-05-07
  • 最后修改日期:2008-05-07
  • 录用日期:2008-05-07
  • 在线发布日期: 2008-05-14
  • 出版日期: