

小唐学家

JOURNAL OF FISHERIES OF CHINA

DOI: 10.11964/jfc.20211213225

以丝瓜络为碳源的固相反硝化系统性能

高书伟^{1,2}, 张 凯¹, 李志斐¹, 谢 骏¹, 王广军¹, 郁二蒙¹, 李红燕¹, 夏 耘¹, 田晶晶¹, 龚望宝^{1*} (1.中国水产科学研究院珠江水产研究所,农业农村部热带亚热带水产资源利用与养殖重点实验室, 广东省水产动物免疫技术重点实验室,广东广州 510380; 2.上海海洋大学,水产科学国家级实验教学示范中心,上海 201306)

摘要: 构建以丝瓜络为碳源的固相反硝化系统, 探究不同水力停留时间 (HRT) 和进水硝酸 盐浓度 (INC) 下该系统的反硝化性能、为丝瓜络作为水产养殖尾水反硝化碳源的工艺优化 提供理论依据。以丝瓜络(LS)为一维反硝化反应器(denitrification reactor, DR)外加碳源, 在流场环境下,测定不同 HRT (16、20、24 和 28 h) 和 INC (50、75、100 和 125 mg/L) 下 反硝化系统对硝酸盐氮 (NO₃⁻-N)、亚硝酸盐氮 (NO₂⁻-N)、氨氮 (NH₄⁺-N)、总氮 (TN)、总磷 (TP) 和化学需氧量(CODcr) 的去除效果。并采用高通量测序技术对丝瓜络反硝化反应器 (LS-DR)在运行初期和末期时的细菌群落结构进行分析。当 INC 为 50 mg/L, HRT 为 24 h 时, LS-DR 对 NO3⁻-N 和 TN 均有较好的去除效果, 去除率分别为 98.97%±0.52% 和 97.84%±0.94%,此时出水 NO⁻-N 浓度也达到较低水平 (小于 0.5 mg/L);在 HRT 为 24 h 的 基础上,当 INC 增加至 75、100 和 125 mg/L 时,其 NO3--N 去除率和 NO3--N 去除速率 (NRR) 均随 INC 的增加而显著增加,出水 COD 则随 INC 的增加而降低,但均未实现完全 反硝化,然而,LS-DR 在整个实验期间均能完全去除 NH₄⁺-N; 扫描电镜结果显示,丝瓜 络表面结构有利于微生物附着生长; 高通量测序结果显示, LS-DR 的优势菌门包括变形菌 门、拟杆菌门、弯曲杆菌门、厚壁菌门和疣微菌门;被鉴定的优势菌属中热单胞菌属 (1.46%)、陶厄氏菌属 (0.55%)、固氮螺菌属 (3.32%)、Simplicispira (1.01%)、假黄色单胞菌 属 (0.39%)、草螺菌属 (3.02%) 和 Uliginosibacterium (0.9%) 主要参与反硝化的进行, Cytophaga xylanolytica (1.61%) 和 Cloacibacterium (2.69%) 主要参与了丝瓜络的降解, 黄杆菌属 (1.17%)和 Diaphorobacter (0.64%)既能进行反硝化,也能降解丝瓜络。LS-DR 的最佳 HRT 为 24 h,最适宜的 INC 为 50 mg/L。本研究为丝瓜络固相反硝化工艺的优化提供了理论基 础,为开发新型缓释碳源在养殖尾水处理中的应用提供参考。

关键词:养殖尾水;固相反硝化;水力停留时间;进水硝酸盐浓度;丝瓜络;微生物群落中图分类号:S949;Q89 文献标志码:A

近年来,我国水产动物蛋白生产领域发展迅猛,水产品总产量已超过世界总产量的一半以上^[1]。 水产养殖在提供大量优质蛋白质的同时,由于大 量的饲料投入以及鱼虾排泄物的产生导致养殖水体氮素积累超负荷,影响了养殖环境和水产品质量安全^[2],养殖尾水直接外排也会引起严重的环

- 收稿日期: 2021-12-13 修回日期: 2022-04-05
- **资助项目**:国家重点研发计划 (2019YFD0900302);广东省促进经济发展专项资金 (粤农 2019B13):国家现代农业 产业技术体系 (CARS-45-21);中国水产科学研究院基本科研业务费 (2020TD58)
- 第一作者: 高书伟, 从事水产养殖水环境调控及尾水处理研究, E-mail: 15036954469@163.com
- 通信作者: 龚望宝, 从事水产养殖水环境调控及尾水处理研究, E-mail: gwb@prfri.ac.cn

版权所有 ©《水产学报》编辑部(CC BY-NC-ND 4.0) 中国水产学会主办 sponsored by China Society of Fisheries Copyright © Editorial Office of Journal of Fisheries of China (CC BY-NC-ND 4.0) https://www.china-fishery.cn 境问题^[3]。异养反硝化去除水体硝酸盐 (NO₃⁻N) 最具经济环保的方法之一,然而水体碳氮比 (C/N) 是制约异养反硝化脱氮效果的关键因素^[4]。 通常养殖尾水的碳氮比在 1.0~2.0(质量比),碳源 不足严重制约了反硝化进程^[5]。因此,对养殖尾 水进行深度脱氮往往需要外加碳源。

传统外加碳源多为甲醇、乙醇和乙酸等液体 碳源和人工合成聚合物如 PCL、PLA 等固体碳源, 因其存在成本高、难操作、易造成二次污染、运 输和储存复杂等问题,阻碍了其广泛应用[6-7]。农 业废弃物是一类以纤维素为主的天然材料,由于 廉价易得、经济环保,且具有较大的比表面积适 合微生物附着生长等优点而备受关注^[8-9]。然而, 水力停留时间 (hydraulic retention time, HRT) 和进 水硝酸盐浓度 (influent nitrate concentration, INC) 是影响以农业废弃物为碳源的固相反硝化系统性 能的关键因素^[10]。当HRT 较短时,单位时间内进 入反应器的氧气量增加会抑制反硝化的进行,同 时反硝化细菌和水体接触时间较短会造成脱氮不 完全^[11]。随着 HRT 的增加, 脱氮效果随之也提高, 但过长的 HRT 也会降低系统的处理效率^[12]。 Blackmer 等^[13]的研究表明, INC 会影响反硝化系 统的脱氮性能,高浓度的 NO3-N 通过抑制氮气的 生成,转而生成一氧化二氮来影响反硝化。通常 INC 的升高能增加单位时间内 NO₃-N 的去除量, 随着 INC 的降低则会出现相反的结果^[10]。这主要 是因为高的 INC 提供了更多的电子受体,单位时 间内减少的 NO₃⁻-N 质量增加^[14]。

丝瓜络 (loofah sponge, LS) 作为一种常见的农 业废弃物,富含纤维素、半纤维素和木质素,能 够持久释放碳源,且具有多层纤维网状结构^[15], 已被证明是一种理想的固体碳源^[8]。然而关于 HRT 和 INC 对丝瓜络反应器反硝化性能的影响少 有报道。本研究的主要目的是构建以丝瓜络为碳 源的固相反硝化系统,并探究在不同 HRT 和 INC 下该系统的反硝化性能,并通过电子显微镜观察 了丝瓜络表面结构变化情况,应用高通量测序技 术分析了反应器运行初期和末期的细菌群落结构 组成。本研究结果为丝瓜络作为反硝化碳源在水 产养殖尾水反硝化工艺的进一步优化提供理论依据。

1 材料与方法

1.1 实验材料和仪器

丝瓜络采自广州市某农村,将丝瓜络剪切为 https://www.china-fishery.cn 约1 cm³大小,用超纯水洗涤2遍,之后60 °C 烘 干放于密封袋中备用。反硝化污泥采自中国水产 科学研究院珠江水产研究所多年未清理的池塘底 泥,用纱布(16目)过滤去除杂质。合成水产养殖 尾水(synthetic aquaculture wastewater,SAW)按照 Li等^[16]的方法用纯水配制,每升 SAW 中氮磷化 合物含量如表1所示,NO₃⁻⁻N浓度根据实验需求 进行调整,亚硝酸盐(NO₂⁻⁻N)为2.5 mg/L,氨氮 (NH₄⁺⁻N)为5.5 mg/L,总磷(TP)为23.88 mg/L, 其中每升 SAW 中微量元素体积占比2‰(2 mL), 实验所需化学药品(分析纯)购于上海麦克林生化 科技股份有限公司。

表1 人工合成养殖废水组成

Tab. 1	Composition of synthetic aquaculture	e wastewater
1 a.v. 1	Composition of synthetic aquacultur	, masicmate

成分	含量
KNO	260 //
KINO ₃	360 mg/L
NH ₄ Cl	21.2 mg/L
NaNO ₂	12.3 mg/L
K_2HPO_4	78 mg/L
KH_2PO_4	44 mg/L
MgSO ₄ ·7H ₂ O	44 mg/L
KCL	37 mg/L
微量元素 trace element	2 mL
EDTA	640 mg/L
FeSO ₄ ·7H ₂ O	550 mg/L
$ZnSO_4 \cdot 7H_2O$	230 mg/L
$MnSO_4$ · H_2O	340 mg/L
$CuSO_4 \cdot 5H_2O$	75 mg/L
Co(NO ₃) ₂ ·6H ₂ O	47 mg/L
$(\mathrm{NH}_4)_6\mathrm{Mo}_7\mathrm{O}_{24}{\cdot}4\mathrm{H}_2\mathrm{O}$	25 mg/L

实验用仪器为 YSI Professional Plus 系统 (YSI Incorporated, 美国), 蠕动泵 (WT-600CAS/353Y型, 北京), COD 测定仪 (DRB200/DR900, 美国), TN 测定仪 (LH-25A/LH-3BN, 北京), 酶标仪 (Multiskan FC, 上海)。

1.2 反应器建立及运行

如图 1 所示,以圆柱形有机玻璃容器作为反 硝化反应器 (denitrification reactor, DR; 直径 10 cm, 高 55 cm),进水方式为下进上出式,进水口位于 底部向上 5 cm 处,出水口位于顶部向下 5 cm 处。 用废旧毛巾 (100×40 cm) 包裹 40 g 丝瓜络和 200 mL 反硝化污泥置入反应器内,有效容积为 (2 800

±100) mL,每组设置3个重复,蠕动泵控制进水 流速来调整HRT。为确保实验数据的有效性及反 应器的规模化运行,本研究在室内进行,温度为 (22±2) ℃,光照强度为(355±31) Lux。LS-DR₀表 示丝瓜络反应器运行初期,LS-DR₁₄表示反应器 运行末期(INC为50 mg/L,HRT 为24 h)。

Fig. 1 Schematic diagram of denitrification system

HRT 对LS-DR 反硝化性能的影响 向LS-DR 中加满 SAW (NO₃⁻-N=50 mg/L),静置,当 NO₃⁻-N 完全去除,且无 NO₂⁻-N 积累,认为驯化成功。之 后维持 INC 为 50 mg/L,分别在 4 个 HRT(16、20、24 和 28 h)下运行 14 d,每 2 天定时测定出水 NO₃⁻-N、NO₂⁻-N、NH₄⁺-N、TN、TP、COD 和溶 解氧 (DO) 浓度以及 pH 值。

INC 对 LS-DR 反硝化性能的影响 驯化 方法同上,在最佳 HRT 的基础上,分别在 3 个 INC (75、100 和 125 mg/L)下运行 14 d,每 2 天测定出 水 NO₃⁻-N、NO₂⁻-N、NH₄⁺-N、TN、TP、COD 和 溶解氧 (DO)浓度以及 pH 值。

LS-DR 微生物群落结构分析 HRT 实验 结束后,分别收集 LS-DR₀和 LS-DR₁₄的污泥样 品进行细菌群落多样性分析。提取 DNA 后,以"CC TACGGRRBGCASCAGKVRVGAAT"为上游引物, "GGACTACNVGGGTWTCTAATCC"序列为下游 引物对原核生物 16S rDNA的 V3 及 V4 高度可变区 进行扩增。PCR 扩增采用 25 μ L 反应体系,包括 上下游引物各 1 μ L、dNTPs 2 μ L、TransStart Buffer 2.5 μ L、TransStart Taq DNA 0.5 μ L 和模板 DNA 20 ng,之后用 dd H₂O 补充体系。高通量测序文库的 构建和基于 Illumina MiSeq 平台的测序由苏州帕 诺米克生物科技有限公司完成。

丝瓜络表面结构分析 分别收集 LS-DR₀ 和 LS-DR₁₄ 的丝瓜络在烘箱中烘干 (60 °C)。利用 扫描电子显微镜 (SEM)(QUANTA 250, Servicebio Co., 中国) 观察其表面结构变化。

1.3 分析方法

水样经 0.45 µm 滤膜 [Pall 颇尔 (中国)有限 公司]过滤后测定 NO₃⁻-N、NO₂⁻-N 和 NH₄⁺-N。 采用 YSI Professional Plus 系统测定 DO 和 pH,使 用重铬酸钾法测定 COD 浓度;采用过硫酸钾消解 法测定 TN 和 TP; NO₃⁻-N 的测定采用麝香草酚分 光光度法; NO₂⁻-N 的测定采用 N-(1-萘基) 乙二胺 光度法; NH₄⁺-N 的测定采用水杨酸分光光度法。

所有数据以"平均值±标准差"的形式表示,采用 SPSS 26.0 对 COD、TN、TP 和 NO₃⁻-N 等指标 进行单因素方差分析,当 P < 0.05时,存在统计 学差异。使用 GraphPad 棱镜 8.0.2 和 Excel 2010 作图。

2 结果

2.1 丝瓜络表面结构变化

运行初期,通过100倍 SEM 观察丝瓜络运行 结果如图版-1所示,发现其表面呈褶皱状,具有 较大的比表面积和粗糙度,适合微生物的生长附 着。在500倍下,丝瓜络表面则相对平整(图版-3)。经过14d运行后,从图版-4可以看出其表面 结构被水解,显露出不规则的片状突起。此外, 表面附着一些细菌和杂质,说明丝瓜络是良好的 生物载体,附着细菌也能促进碳源的释放及反硝 化的进行。

2.2 HRT 对 NO₃⁻-N、NO₂⁻-N、NH₄⁺-N、TN、 TP 和 COD 的影响

整个实验期间,LS-DR的DO均低于1mg/L, pH在6.50~7.20。如图2-a所示, INC为50 mg/L 时,不同HRT下,出水硝酸盐浓度 (effluent nitrate concentration, ENC) 均大幅度降低。HRT为16、 20、24 和 28 h 时, NO₃⁻N 去除率分别为 69.19%± 4.59%、82.65%±3.62%、98.97%±0.52%和98.62%± 1.33%。单因素方差分析显示, HRT 在 16~24 h, NO₃-N 去除率随 HRT 的延长而显著升高 (P<0.05)。 当 HRT 从 24 h 增加到 28 h 时, NO₃-N 去除率维 持稳定 (P=0.80), 说明 HRT 在 24 h 时, LS-DR 已 能达到最佳的 NO₃-N 去除效果。NO₂-N 的变化 与 ENC 有相似趋势,说明 NO2-N 积累量与 ENC 呈正相关,当 HRT 为 16 和 20 h 时, NO2--N 分别 为 (5.19±1.52) 和 (1.39±0.49) mg/L(图 2-a), 当增加 至 24 和 28 h 时, NO₂⁻⁻N 低于 0.5 mg/L, 说明可 以实现完全反硝化。在进水 NH4+-N 浓度为 5.50 mg/L的情况下, LS-DR均能够将其完全去除。

图版 实验前 (1、2) 后 (3、4) 丝瓜络表面结构扫描电镜观察结果

1, 3. LS-DR0; (2)(4) LS-DR14.

Plate SEM observation results of surface structure of LS before (1, 2) and after (3, 4) the experiment

TN 的去除过程与 NO₃⁻-N 有相似的规律 (图 2-b), 当HRT 为 16 和 20 h 时, TN 去除率分别为 73.30%± 7.21% 和 70.67%±6.30%,延长至 24 h 后, TN 去 除率达到最高 (97.84%±0.94%),显著高于其他 HRT (*P*<0.05)。综合以上分析,本研究中 LS-DR 的最佳 HRT 为 24 h。

TP随HRT的变化曲线如图 2-b 所示,HRT在 16~28 h时,TP 去除率为 88%~89%,无显著差异 (P>0.05)。如图 2-c 所示,COD随HRT的增加呈 先降低后升高的趋势,分别为(77.42±16.66)mg/L (HRT=16h)、(32.25±9.33)mg/L(HRT=20h)、(26.52± 10.52)mg/L (HRT=24 h)和 (44.24±10.88)mg/L (HRT=28 h),其中HRT为16 h时,COD的利用 率较低,出水COD显著高于其他HRT(P<0.05), 但HRT在20、24和28 h时出水COD无显著差 异(P>0.05)。

2.3 INC 对 NO₃⁻-N、NO₂⁻-N、TN、TP 和 COD 的影响

在最佳 HRT(24 h) 的基础上,当 INC 为 75、 100 和 125 mg/L 时,ENC 随 INC 的增加而增加 (图 3-a),分别为(24.89±2.91)、(26.91±0.94)和 (27.55±2.78) mg/L,无显著差异(P>0.05)。NO₃⁻⁻ N 去除率随 INC 增加而大幅度增加,当 INC 为 125 mg/L时,NO₃⁻⁻N 去除率(77.96%±2.22%)显著 高于 INC 为 75 mg/L (66.81%±3.88%)和 100 mg/L (73.09%±0.94%)时的去除率(P<0.05)。同样,NO₃⁻⁻ N 去除速率 (nitrate removal rate, NRR) 也随 INC 提 高而显著增加 (P<0.05), 当 INC 为 75、100 和 125 mg/L时, NRR 分别为 (50.11±2.91)、(73.09±0.94) 和 (97.45±2.78) mg/(L·d), 说明 INC 能够显著影响 LS-DR 的 NO₃⁻-N 去除率和 NRR。如图 3-a 所示, NO₂⁻N 与 NO₃⁻N 有相似的变化趋势,然而, INC 为75、100和125 mg/L时, NO2--N均出现积累, 分别为 3.80±1.22、 5.37±0.75 和 5.67±0.07 mg/L, 说明 INC 在 75 至 125mg/L 范围内, LS-DR均不能 实现完全反硝化。不同 INC 下, TN 的变化曲线 如图 3-b 所示,分别为 (29.65±3.16) mg/L (INC= 75 mg/L)、(37.77±3.56) mg/L (INC=100 mg/L)和 (40.27±7.12) mg/L (INC=125 mg/L), 对应去除率分 别为 64.28%±3.81%、 65.03%±3.29% 和 69.72%± 5.35%,各组之间无显著差异(P>0.05)。结合上述 结果,本实验认为在最佳 HRT(24 h) 的基础上, 当 INC 为 50 mg/L时, LS-DR 的 NO₃-N 处理能力 达到饱和。

TP 的变化曲线如图 3-b 所示,不同 INC 下, TP 去除率在 81%~82%,各组之间无显著差异 (*P*>0.05),说明 INC 对 TP 的去除效果影响不大。 如图 3-c 所示,COD 随 INC 的增加出现降低,INC 为 75 mg/L 时,出水 COD 为 (55.05±15.90) mg/L, 显著高于 INC 为100 mg/L[(33.14±12.58) mg/L] 和125 mg/L[(26.67±15.66) mg/L] 时,说明 INC 对出水 COD 也有明显影响。

2.4 LS-DR 微生物群落结构分析

高书伟,等

LS-DR运行前后微生物多样性指数变化 对原始序列进行质控后,分别获得49881和 52389个高质量序列,共归入5202和4247个 OTU。所有样本 Coverage 指数大于0.98,说明测 序序列几乎覆盖所有的细菌,测序结果具有可靠 性和代表性(表2)。LS-DR 经过14天运行后,其 Observed-species、Chao1、Shannon 指数和 ACE 指 数均降低,说明细菌群落多样性和均匀性改变, 其物种数目、丰富度和均匀度降低,部分细菌被 富集。

门水平上的微生物群落结构 对OTU代表序列进行门水平上的分类,如图 4-a 所示。LS-DR 运行初期及末期的优势菌在结构组成上有一定的相似性,包括变形菌门 (Proteobacteria)、盐杆菌门 (Halobacterota)、拟杆菌门 (Bacteroidetes)、脱硫

Fig. 3 Removal performance of LS-DR for nitrogen and phosphorus pollutants at different INC

化石 油图时后 医少叶口的 网络	表 2	2 细	菌群落	a 多	·样性	指数
------------------	-----	-----	-----	-----	-----	----

Tab 2	The a	diversity	index	of bacterial	community
1 av. 2	Incu	urversity	muca	UI Dacteriai	community

样品 samples	有效序列 effective sequence	OTUs	观察结果 observed-species	覆盖率 coverage	Chao1	Shannon	Simpson	ACE
LS-DR ₀	49881	5 2 0 2	3 0 9 5	0.98	3443.61	9.07	0.99	3 5 1 9.78
LS-DR ₁₄	52389	4247	2315	0.98	2593.63	8.24	0.99	2671.21

细菌门 (Desulfobacterota)、弯曲杆菌门 (Campilobacterota)、厚壁菌门 (Firmicutes)、Sva0485、绿弯

https://www.china-fishery.cn

菌门 (Chloroflexi) 和疣微菌门 (Verrucomicrobiota) 等,但其相对丰度具有差异,运行初期,它们的 中国水产学会主办 sponsored by China Society of Fisheries 相对丰度分别为 15.53%、14.68%、4.61%、8.35%、0.13%、1.69%、4.99%、4.19% 和 2.27%。运行 14 d 后,变形菌门、拟杆菌门、弯曲杆菌门、厚壁 菌门和疣微菌门分别增至 33.46%、10.66%、0.34%、2.74% 和 2.40%,相反,盐杆菌门、脱硫 细菌门、Sva0485、绿弯菌门分别降至 7.58%、6.10%、3.65% 和 1.97%。整体来说,碳源的持续 释放以及硝酸盐的注入导致 LS-DR 内的部分细菌 被富集。

纲水平上的徽生物群落结构 如图 4-b 所示, LS-DR₁₄的优势纲为γ-变形菌纲 (Gammaproteobacteria, 31.69%)、拟杆菌纲 (Bacteroidia, 10.41%)、 Methanosarcinia (9.27%)、 Thermodesulfovibrionia (5.38%)、弯曲菌纲 (Campylobacteria, 0.34%)、甲 烷微菌纲 (Methanomicrobia, 3.05%)、梭状芽孢杆 菌纲 (Clostridia, 1.97%)、Desulfobacteria (3.15%)、 α-变形菌纲 (Alphaproteobacteria, 1.76%)等。相 比 LS-DR₀, γ-变形菌纲、拟杆菌纲、弯曲菌纲、 梭状芽孢杆菌纲和 α-变形菌纲的相对丰度增加, Methanosarcinia、Thermodesulfovibrionia、甲烷微 菌纲和 Desulfobacteria 则降低。

属水平上的微生物群落结构 在属水平 上进一步对 OTU 进行分类,可以观察到细菌群落 结构更详细的差异(图 5)。LS-DR 运行初期的优 势菌属为鬃毛甲烷菌属(Methanosaeta, 9.26%)、 甲烷绳菌属(Methanolinea, 3.19%)、Desulfatiglans (2.90%)、Candidatus_Competibacter(2.27%)、Methanoregula(2.07%)、Sva0081_sediment_group(1.54%)、 Geothermobacter (1.43%)、 unidentified_Thermodesulfovibrionia (1.00%)、ADurb.Bin063-1 (0.86%)和 莫拉菌属(Moraxella, 0.72%)。然而, LS-DR 运 行 14 d 后,优势菌属出现明显改变,为热单胞菌 属(Thermomonas, 1.46%)、陶厄氏菌属(Thauera, 0.55%)、固氮螺菌属(Azospira, 3.32%)、Simpli-

Fig. 4 Relative bacteria abundance of LS-DR₀ and LS-DR₁₄ at phylum (a) and class (b) levels

cispira (1.01%)、草螺菌属 (Herbaspirillum, 3.02%)、 Cloacibacterium (2.69%)、假黄色单胞菌属 (Pseudoxanthomonas, 0.39%)、Uliginosibacterium (0.9%)、 Lacunisphaera (1.02%)、Cytophaga xylanolytica (1.61%)、黄杆菌属 (Flavobacterium, 1.17%)、Diaphorobacter (0.64%) 和 Macellibacteroides (1.59%)。

3 讨论

3.1 LS-DR 的反硝化性能

厌氧和弱酸性条件有利于反硝化的进行^[17-18], 实验期间,LS-DR内环境条件均达到此标准。本 研究中,HRT为24h时,LS-DR的反硝化性能最

https://www.china-fishery.cn

丝瓜络作为反硝化滤池填料,水力停留时间为 24 h时,对生活污水中各污染指标去除效果达到 最好。钟华等^[20] 报道玉米芯固相反硝化系统的最 佳水力停留时间为 16 h,而腐朽木作为缓释碳源 外加到硝化滤池,在初始阶段 HRT 为 12 h 的脱氮 效果最佳^[21]。碳源的种类及添加量、反应器的理 化状态、进水特性以及温度等因素均能影响添加 碳源的反硝化系统的反硝化性能^[22-24]。本研究中, 当 HRT 达到 24 h 后,系统反硝化性能并未随着 HRT 的增加而显著增加,在以废活性污泥的热水 解液和产酸液为反硝化碳源时也有相似的发现^[25]。

佳,这一结果与栾晓男等^[19]的研究结果一致,以

这是因为过长的 HRT 导致 NO₃⁻-N 的相对流入量 减少,抑制了反硝化细菌的活性,导致 NO₃⁻-N 去 除率并未显著增加^[26-27]。同时过长的 HRT 促进了 有机底物的进一步发酵和水体中较小的胶体和可 溶性有机物 (粒径<0.45 μm)的释放^[27],导致出水 COD 浓度也出现一定量的回升。

本研究在最佳 HRT 条件下,当 INC 为 50 mg/L 时,LS-DR 的反硝化性能最佳。HRT 是影响反硝 化系统最佳 INC 的关键因素。以玉米芯为碳源的 反硝化系统在 HRT 为 16 h 时, INC 为 50 mg/L 时 具有最佳反硝化效果^[20],而以羟基丁酸戊酸共聚 酯为碳源的反硝化系统在 HRT 为 7.25 h 时的最佳 INC 为 100 mg/L,并随着 HRT 的变化,反硝化系 统的最佳 INC 发生改变[28]。董全宇等[29] 报道木屑-硫磺填充床反硝化生物滤池在 HRT 为 10 h 条件下, INC为30 mg/L时的反硝化性能最好。LS-DR的 NRR 随着 INC 的增加而增加,这一结果与 Hoover 等^[30]的研究结果相似,以木片为反硝化系统外加 碳源, INC从 10 增至 50 mg/L 后, 出水 NO₃-N 逐渐增加,单位时间内 NO₃-N 去除量从 7.5增加 到 12.9 mg/L。这主要因为随着 INC 的提高,反应 器单位体积内电子受体增加,有效反硝化的 NO3--N质量也随之增加,单位时间内减少的NO₃-N 质量也增加^[10],同样的,有机物作为反硝化的电 子供体,其消耗量也会增加,因此出水 COD 呈下 降趋势。

3.2 LS-DR 的微生物群落结构分析

LS-DR运行14d后细菌群落结构发生改变。 其中变形菌门普遍存在环境中,是反硝化细菌的 主要来源[31],其在制药、炼油、食品等工业废水 和城市污水[32] 以及水产养殖尾水[5] 中均是促进反 硝化的优势类群。隶属变形菌门的 γ-变形菌纲和 α-变形菌纲包含丰富的硝化细菌、厌氧氨氧化细 菌和 NO2-N 氧化细菌^[33],是 LS-DR 脱氮的主要 参与者,在麦秸秆、棉花、废报纸和聚丁二酸丁 二醇酯为碳源的人工湿地中均是优势纲^[34]。拟杆 菌门也普遍存在生态系统中参与氮循环和能量转 换^[35],其中拟杆菌纲有反硝化功能^[36]。此外,拟 杆菌门中还存在分解蛋白质、纤维素和脂质等大 分子有机物的细菌[27],促进了丝瓜络的分解。以 丝瓜络为填料的反硝化滤池中也发现拟杆菌门大 量存在[37]。厚壁菌门中也存在参与反硝化和纤维 素降解的细菌,曾在生活污水处理系统中被发

现^[89]。绿弯菌门在反硝化过程中的具体作用并没 有报道,但亚硝酸盐氧化菌已经从绿弯菌门中分 离出来^[99],具有一定参考性。疣微菌门中存在具 有较高木质素降解能力的细菌^[40],主要促进丝瓜 络降解。

在被鉴定的优势属中假黄色单胞菌能够还原 NO₂⁻-N, 但不能还原 NO₃⁻-N^[41], *Diaphorobac*ter 和黄杆菌均能降解丝瓜络并进行反硝化, 以往 研究发现,上述三类菌属在聚羟基丁酸戊酸共聚 酯支撑的养殖尾水处理系统运行中后期成为优势 菌属^[42],这与本研究相似; Cvtophaga xvlanolvtica 能在严格厌氧下分解木聚糖等多糖^[43],对丝瓜 络的降解有重要作用;热单胞菌属和陶厄氏菌属 是常见的反硝化菌属[44],在以猪粪为碳源处理养 猪尾水的过程中被富集[45]。有趣的是,有研究发 现陶厄氏菌在以纤维素类材料为碳源的人工湿地 中被富集, 而在可降解聚合物为碳源的人工湿地 中减少^[34],说明丝瓜络对反硝化菌有选择性。 Simplicispira 在玉米芯支撑的人工湿地中是优势反 硝化菌属^[46],在本研究中同样被发现。草螺菌属 和 Uliginosibacterium 均为好氧反硝化菌^[47],曾在 城市污水处理厂中发现^[48],可能导致反应器内低 溶氧条件。Cloacibacterium 主要参与丝瓜络的降 解,其对玉米芯^[49]、羟基丁酸和羟基戊酸共聚 物^[50]也有降解作用。综合来看,这些富集菌属共 同促进了丝瓜络的降解和反硝化的进行。添加 CH₃COONa^[51]、小麦秸秆、棉花、聚琥珀酸丁二 烯和报纸[34]的反硝化系统中均富集了反硝化功能 属。相反,甲烷鬃菌属、甲烷绳菌属和 Methanoregula 等一些产甲烷古细菌在 LS-DR 内丰度降低, 这可能是有机物浓度的增加对它们的生长代谢有 抑制作用^[52],在同步反硝化产甲烷系统中也有类 似现象发生[53]。

4 结论

INC 为 50 mg/L, HRT 为 24 h 时, LS-DR 的 反硝化性能最佳, NO₃⁻-N 去除率达到 98.97%±0.52%, TN 去除率达到 97.84%±0.94%, NO₂⁻-N 处于较低 水平 (<0.5 mg/L),能够实现完全反硝化。在 HRT 为 24 h 的基础上,当 INC 分别增加至 75、100 和 125 mg/L 时, LS-DR 的 NO₃⁻-N 去除率和 NRR 均 随 INC 的增加而增加,出水 COD 随 INC 的增加 而降低,但均未实现完全反硝化。

在 HRT 为 24 h, INC 为 50 mg/L 条件下运行

14 d 后,LS-DR 内细菌群落结构发生改变,优势 菌门包括变形菌门、拟杆菌门、弯曲杆菌门、厚 壁菌门和疣微菌门。被鉴定的优势菌属中热单胞 菌属、陶厄氏菌属、固氮螺菌属、Simplicispira、 假黄色单胞菌属、草螺菌属和 Uliginosibacterium 能够进行反硝化,Cytophaga xylanolytica 和 Cloacibacterium 主要参与了丝瓜络的降解,Diaphorobacter 和黄杆菌既能进行反硝化,也能降解 丝瓜络。

(作者声明本文无实际或潜在的利益冲突)

参考文献 (References):

- [1] FAO. The state of world fisheries and aquaculture 2020[M]. Rome: FAO, 2020.
- [2] Davidson J, Good C, Welsh C, et al. Comparing the effects of high vs. low nitrate on the health, performance, and welfare of juvenile rainbow trout Oncorhynchus mykiss within water recirculating aquaculture systems[J]. Aquacultural Engineering, 2014, 59: 30-40.
- Li R, Feng C P, Hu W H, *et al.* Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation[J].
 Water Research, 2016, 89: 171-179.
- [4] Ovez B, Ozgen S, Yuksel M. Biological denitrification in drinking water using *Glycyrrhiza glabra* and *Arunda donax* as the carbon source[J]. Process Biochemistry, 2006, 41(7): 1539-1544.
- [5] 罗国芝,侯志伟,高锦芳,等.不同水力停留时间条件下PCL为碳源去除水产养殖水体硝酸盐的效率及微生物群落分析[J].环境工程学报,2018,12(2):572-580.
 Luo G Z, Hou Z W, Gao J F, *et al.* Nitrate removal efficiency and microbial community analysis of polycaprolactone-packed bioreactors with PCL as carbon source treating aquaculture water under different hydraulic retention time[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 572-580 (in Chinese).
- [6] 荆肇乾,彭英艳,何瑞,等.降低脱氮成本的新型碳源
 与工艺研究概况[J].湖北农业科学,2015,54(3):517-520.

Jing Z Q, Peng Y Y, He R, *et al.* New types of carbon source for reducing the cost of denitrification[J]. Hubei Agricultural Sciences, 2015, 54(3): 517-520 (in Chinese).

https://www.china-fishery.cn

Luo G Z, Li L, Liu Q, *et al*. Effect of dissolved oxygen on heterotrophic denitrification using poly(butylene suc-

cinate) as the carbon source and biofilm carrier[J]. Biore-

[7]

[8] Yang X L, Jiang Q, Song H L, et al. Selection and application of agricultural wastes as solid carbon sources and biofilm carriers in MBR[J]. Journal of Hazardous Materials, 2015, 283: 186-192.

source Technology, 2014, 171: 152-158.

- [9] Wang J L, Chu L B. Biological nitrate removal from water and wastewater by solid-phase denitrification process[J]. Biotechnology Advances, 2016, 34(6): 1103-1112.
- [10] Wang J Q, Ma R, Guo Z L, *et al.* Experiment and multicomponent model based analysis on the effect of flow rate and nitrate concentration on denitrification in lowpermeability media[J]. Journal of Contaminant Hydrology, 2020, 235: 103727.
- [11] Torno J, Naas C, Schroeder J P, et al. Impact of hydraulic retention time, backflushing intervals, and C/N ratio on the SID-reactor denitrification performance in marine RAS[J]. Aquaculture, 2018, 496: 112-122.
- [12] Addy K, Gold A J, Christianson L E, et al. Denitrifying bioreactors for nitrate removal: a meta-analysis[J]. Journal of Environmental Quality, 2016, 45(3): 873-881.
- [13] Blackmer A M, Bremner J M. Stimulatory effect of nitrate on reduction of N₂O to N₂ by soil microorganisms[J]. Soil Biology and Biochemistry, 1979, 11(3): 313-315.
- [14] Liu Y Y, Liu C X, Nelson W C, et al. Effect of water chemistry and hydrodynamics on nitrogen transformation activity and microbial community functional potential in hyporheic zone sediment columns[J]. Environmental Science & Technology, 2017, 51(9): 4877-4886.
- [15] Tang X N, Zhang Q, Liu Z J, *et al.* Removal of Cu (II) by loofah fibers as a natural and low-cost adsorbent from aqueous solutions[J]. Journal of Molecular Liquids, 2014, 199: 401-407.
- [16] Li C W, Li J W, Liu G, et al. Performance and microbial community analysis of combined denitrification and biofloc technology (CDBFT) system treating nitrogen-rich aquaculture wastewater[J]. Bioresource Technology, 2019, 288: 121582.
- [17] Waki M, Yasuda T, Fukumoto Y, et al. Treatment of swine wastewater in continuous activated sludge sys-中国水产学会主办 sponsored by China Society of Fisheries

tems under different dissolved oxygen conditions: reactor operation and evaluation using modelling[J]. Bioresource Technology, 2018, 250: 574-582.

- [18] Albina P, Durban N, Bertron A, et al. Influence of hydrogen electron donor, alkaline pH, and high nitrate concentrations on microbial denitrification: a review[J]. International Journal of Molecular Sciences, 2019, 20(20): 5163.
- [19] 栾晓男,田云飞,郑力,等. 丝瓜络填料反硝化滤池对 生活污水的净化[J].环境工程学报, 2016, 10(7): 3471-3476.

Luan X N, Tian Y F, Zheng L, *et al.* Sewage purification by loofah denitrification filler[J]. Chinese Journal of Environmental Engineering, 2016, 10(7): 3471-3476 (in Chinese).

[20] 钟华,程莹,张洪维,等.基于玉米芯的固相反硝化柱 实验研究[J].湖南大学学报(自然科学版),2019, 46(12):133-140.

Zhong H, Cheng Y, Zhang H W, *et al.* Performance of corncob-based solid phase denitrification system: a column study[J]. Journal of Hunan University (Natural Sciences), 2019, 46(12): 133-140 (in Chinese).

- [21] 樊毅, 胡细全, 明佳齐. 腐朽木为填料的反硝化滤池特 性研究[J]. 环境科学与技术, 2021, 44(4): 165-170.
 Fan Y, Hu X Q, Ming J Q. Study on characteristics of denitrification filter with decayed wood as filler[J].
 Environmental Science & Technology, 2021, 44(4): 165-170 (in Chinese).
- [22] 丁怡, 宋新山, 严登华. 反硝化碳源在人工湿地脱氮中的应用及其研究进展[J]. 环境污染与防治, 2011, 33(12): 65-69.

Ding Y, Song X S, Yan D H. The application and research progress of denitrifying carbon source in constructed wetlands for nitrogen removal[J]. Environmental Pollution & Control, 2011, 33(12): 65-69 (in Chinese).

[23] 侯卫龙,周鸿翔,施加春等.碳源、温度及水力停留时间对地下水硝酸盐的去除效果[J].浙江大学学报(农业与生命科学版),2014,40(3):314-321.

Hou W L, Zhou H X, Shi J C, *et al.* Effects of carbon sources, temperature and hydraulic retention time on nitrate removal from groundwater. Journal of Zhejiang University (Agric. & Life Sci), 2014, 40(3): 314-321 (in Chinese).

- [24] Kanda R, Kishimoto N, Hinobayashi J, et al. Influence of temperature and COD loading on biological nitrification-denitrification process using a trickling filter: an empirical modeling approach[J]. International Journal of Environmental Research, 2017(11): 71-82.
- [25] Guo Y D, Guo L, Sun M, et al. Effects of hydraulic retention time (HRT) on denitrification using waste activated sludge thermal hydrolysis liquid and acidogenic liquid as carbon sources[J]. Bioresource Technology, 2017, 224: 147-156.
- [26] He Y, Wang Y H, Song X S. High-effective denitrification of low C/N wastewater by combined constructed wetland and biofilm-electrode reactor (CW-BER)[J]. Bioresource Technology, 2016, 203: 245-251.
- [27] Cao S B, Sun F Q, Lu D, *et al.* Characterization of the refractory dissolved organic matters (rDOM) in sludge alkaline fermentation liquid driven denitrification: effect of HRT on their fate and transformation[J]. Water Research, 2019, 159: 135-144.
- [28] Xu Z S, Song L Y, Dai X H, et al. PHBV polymer supported denitrification system efficiently treated high nitrate concentration wastewater: denitrification performance, microbial community structure evolution and key denitrifying bacteria[J]. Chemosphere, 2018, 197: 96-104.
- [29] 董全宇, 陈帆, 陈浩等. 木屑-硫磺填充床反硝化生物滤
 池强化硝酸盐去除 [J]. 环境工程学报 2018, 12(10):
 2725-2731.

Dong Q Y, Chen F, Cheng H, *et al.* Woodchip-sulfur pached denitrification biofilter for enhanced nitrate removal [J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2725-2731 (in Chinese).

- [30] Hoover N L, Bhandari A, Soupir M L, *et al.* Woodchip denitrification bioreactors: impact of temperature and hydraulic retention time on nitrate removal[J]. Journal of Environmental Quality, 2016, 45(3): 803-812.
- [31] Meng H, Wu R N, Wang Y F, et al. A comparison of denitrifying bacterial community structures and abundance in acidic soils between natural forest and re-vegetated forest of Nanling Nature Reserve in southern China[J]. Journal of Environmental Management, 2017, 198: 41-49.
- [32] Ma Q, Qu Y Y, Shen W L, *et al.* Bacterial community compositions of coking wastewater treatment plants in

水产学报, 2024, 48(2): 029414

steel industry revealed by Illumina high-throughput sequencing[J]. Bioresource Technology, 2015, 179: 436-443.

- [33] Kumar M, Lin J G. Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal-Strategies and issues[J]. Journal of Hazardous Materials, 2010, 178(1-3): 1-9.
- [34] Si Z H, Song X S, Wang Y H, et al. Intensified heterotrophic denitrification in constructed wetlands using four solid carbon sources: denitrification efficiency and bacterial community structure[J]. Bioresource Technology, 2018, 267: 416-425.
- [35] Zhao Y F, Cao X, Song X S, et al. Montmorillonite supported nanoscale zero-valent iron immobilized in sodium alginate (SA/Mt-NZVI) enhanced the nitrogen removal in vertical flow constructed wetlands (VFCWs)[J]. Bioresource Technology, 2018, 267: 608-617.
- [36] Zhang W, Bai Y, Ruan X H, *et al.* The biological denitrification coupled with chemical reduction for groundwater nitrate remediation via using SCCMs as carbon source[J]. Chemosphere, 2019, 234: 89-97.
- [37] 张浏,栾晓男,杜玉来. 丝瓜络填料反硝化滤池中微生物群落结构研究[J]. 安徽农业科学, 2017, 45(20): 60-64,69.

Zhang L, Luan X N, Du Y L. Study on the loofah filler microorganism community structure in denitrification filters[J]. Journal of Anhui Agricultural Sciences, 2017, 45(20): 60-64,69 (in Chinese).

- [38] Wang H Y, He Q L, Chen D, et al. Microbial community in a hydrogenotrophic denitrification reactor based on pyrosequencing[J]. Applied Microbiology and Biotechnology, 2015, 99(24): 10829-10837.
- [39] Sorokin D Y, Lücker S, Vejmelkova D, et al. Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi[J]. The ISME Journal, 2012, 6(12): 2245-2256.
- [40] Qu J Q, Yang H C, Liu Y, *et al.* The study of natural biofilm formation and microbial community structure for recirculating aquaculture system[J]. IOP Conference Series:Earth and Environmental Science, 2021, 742(1): 012018.
- [41] Thierry S, Macarie H, Iizuka T, et al. Pseudoxanthomonas mexicana sp. nov. and Pseudoxanthomonas japonen-

https://www.china-fishery.cn

sis sp. nov., isolated from diverse environments, and emended descriptions of the genus *Pseudoxanthomonas Finkmann et al.* 2000 and of its type species[J]. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(6): 2245-2255.

[42] 张兰河, 刘丽丽, 仇天雷, 等. 以聚羟基丁酸戊酸共聚 酯为碳源去除循环水养殖系统的硝酸盐及生物膜中 微生物群落动态[J]. 微生物学报, 2014, 54(9): 1053-1062.

> Zhang L H, Liu L L, Qiu T L, *et al.* Nitrate removal from recirculating aquaculture system using polyhydroxybutyrate-co-hydroxyvalerate as carbon source[J]. Acta Microbiologica Sinica, 2014, 54(9): 1053-1062 (in Chinese).

- [43] Haack S K, Breznak J A. Cytophaga xylanolytica sp. nov., a xylan-degrading, anaerobic gliding bacterium[J]. Archives of Microbiology, 1992, 159(1): 6-15.
- [44] Hao R X, Li S M, Li J B, et al. Denitrification of simulated municipal wastewater treatment plant effluent using a three-dimensional biofilm-electrode reactor: operating performance and bacterial community[J]. Bioresource Technology, 2013, 143: 178-186.
- [45] Luo Z F, Wang D H, Yang J, et al. The effect of using pig manure as an internal carbon source in a traditional piggery wastewater treatment system for biological denitrification[J]. Ecological Engineering, 2020, 143: 105638.
- [46] 张旭,刘佳,许兵,等.添加生态型植物碳源对人工湿地脱氮除磷效果的研究[J].安全与环境工程,2022,29(2):199-204,220.

Zhang X, Liu J, Xu B, *et al.* Effect of adding ecological plant carbon sources on nitrogen and phosphorus removal in constructed wetland[J]. Safety and Environmental Engineering, 2022, 29(2): 199-204,220 (in Chinese).

- [47] 梁书诚, 赵敏, 卢磊, 等. 好氧反硝化菌脱氮特性研究 进展[J]. 应用生态学报, 2010, 21(6): 1581-1588.
 Liang S C, Zhao M, Lu L, *et al.* Research advances in denitrogenation characteristics of aerobic denitrifiers[J].
 Chinese Journal of Applied Ecology, 2010, 21(6): 1581-1588 (in Chinese).
- [48] 梁潇,姚新运,李亮,等.城镇污水AAOA高标准除磷脱 氮技术开发与应用[J].环境工程学报,2022,16(2):612-620.

水产学报, 2024, 48(2): 029414

Liang X, Yao X Y, Li L, *et al.* Development and application of AAOA high-standard phosphorus and nitrogen removal technology for urban sewage[J]. Chinese Journal of Environmental Engineering, 2022, 16(2): 612-620 (in Chinese).

[49] 于鲁冀, 范鹏宇, 张振兴, 等. 缓释碳源生态基质对高 氨氮废水脱氮研究[J]. 工业安全与环保, 2018, 44(12): 86-90.

> Yu L J, Fan P Y, Zhang Z X, *et al.* Denitrification effect of artificial slow-release carbon source substrate[J]. Industrial Safety and Environmental Protection, 2018, 44(12): 86-90 (in Chinese).

[50] 王婷,孙佳宁,吴为中. 固相碳源脱氮同步去除壬基酚 的试验研究[J]. 中国环境科学, 2017, 37(8): 2915-2923.
Wang T, Sun J N, Wu W Z. Simultaneous removal of nitrogen and nonylphenol using solid phase carbon source[J]. China Environmental Science, 2017, 37(8): 2915-2923 (in Chinese).

[51] 周梦娟, 缪恒锋, 陆震明, 等. 碳源对反硝化细菌的反 硝化速率和群落结构的影响[J]. 环境科学研究, 2018, 31(12): 2047-2054.

Zhou M J, Miao H F, Lu Z M, *et al.* The influence of different carbon sources on denitrification rate and community structure of denitrifying bacteria[J]. Research of Environmental Sciences, 2018, 31(12): 2047-2054 (in Chinese).

- [52] Feng S S, Hong X J, Wang T, et al. Reutilization of high COD leachate via recirculation strategy for methane production in anaerobic digestion of municipal solid waste: performance and dynamic of methanogen community[J]. Bioresource Technology, 2019, 288: 121509.
- [53] Yi X H, Wan J Q, Ma Y W, et al. Characteristics and dominant microbial community structure of granular sludge under the simultaneous denitrification and methanogenesis process[J]. Biochemical Engineering Journal, 2016, 107: 66-74.

Solid phase denitrification system performance using loofah sponge as carbon source

GAO Shuwei ^{1,2}, ZHANG Kai ¹, LI Zhifei ¹, XIE Jun ¹, WANG Guangjun ¹, YU Ermeng ¹, LI Hongyan ¹, XIA Yun ¹, TIAN Jingjing ¹, GONG Wangbao ^{1*}

 (1. Key Laboratory of Tropical & Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong Key Laboratory of Aquatic Animal Immunity Technology, Guangzhou 510380, Guangdong, China;
 2. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China)

Abstract: The second national pollution sources survey showed that the total nitrogen emission from aquaculture is 99 100 tons in 2017. To protect the environment and human health, it is important to remove nitrogen from aquaculture wastewater before being discharged to surrounding waters. Biological denitrification is considered the most promising approach methods, since nitrate can be reduced to harmless nitrogen gas by bacteria. Sufficient carbon source is necessary during heterotrophic denitrification process. To solve the problems mentioned above, external carbon sources such as methanol, acetic acid and glucose were added to the wastewater, whereas they were generally high-cost, high-energy and high operating requirement. In contrast, agricultural wastes were used as carbon source, which has shown significant economic advantages and high-efficiency. Many aquaculture wastewater treatment systems often face variations in hydraulic retention time (HRT) and Influent nitrate concentration (INC) which are caused by acute change of wastewater characteristics and production, and HRT and INC often exert a profound effect on the treatment performance of biological treatment systems. The purpose of this study is to construct a solid-phase denitrification system with loo-

fah sponge as carbon source, and investigate the effects of HRT and INC on the denitrification performance of loofah sponge-denitrification reactor (LS-DR), so as to provide a theoretical basis for the further optimization of denitrification process of loofah sponge as denitrification carbon source in aquaculture tailwater. Loofah sponge, one typical agricultural waste, was studied as the carbon source for solid phase denitrification under dynamic flow conditions by using 1-D column experiment. We aim to preliminarily investigate the LS-DR's NO₃⁻-N, NO₂⁻-N, NH₄⁺-N, TN, TP and COD removal effect at different HRT (16, 20, 24 and 28 h) and INC (50, 75, 100 and 125 mg/L). The optimal HRT of denitrification reactor was optimized by one-way ANOVA analysis. And, the high-throughput sequencing technology based on Illumina MiSeq platform was used to analyze the bacterial community structure of LS-DR in the initial and final stages of operation. The results indicated that when INC=50 mg/L and HRT=24 h, the removal efficiency of both NO₃-N and TN in LS-DR reached the highest value, which were 98.97%±0.52% and 97.84%±0.94% respectively. And NO₂-N was also at a low level (< 0.5 mg/L). On the basis of HRT of 24 h, when INC increases to 75, 100 and 125 mg/L, the nitrate removal efficiency and nitrate removal rate (NRR) of LS-DR increased significantly with the increase of INC (P < 0.05), and the effluent COD decreased with the increase of INC, but LS-DR did not realize complete denitrification. It is worth noting that LS-DR can completely remove NH_4^+ -N throughout the experiment. After 14 days of operation, SEM results showed that the surface structure of LS was conducive to the attachment and growth of microorganisms; high throughput sequencing results showed that the dominant bacteria of LS-DR included Proteobacteria, Bacteroidetes, Campilobacterota, Firmicutes and Verrucomicrobiota. Among the identified bacteria, Thermomonas (1.46%), Thauera (0.55%), Azospira (3.32%), Simplicispira (1.01%), Pseudoxanthomonas (0.39%), Herbaspirillum (3.02%) and Uliginosibacterium (0.9%) can carry out denitrification. Cyphaga xylanolytica (1.61%) and Cloacibacterium (2.69%) are mainly involved in the degradation of towel gourd, Flavobacterium (1.17%) and Diaphorobacter (0.64%) can both denitrify and degrade LS. According to the analysis of the above results, it is considered that the optimal HRT of LS-DR is 24 h and the optimal INC is 50 mg/L. This study provides a reference for the optimization of loofah sponge solid-phase denitrification process and promotes the development and application of new slow-release carbon sources.

Key words: aquaculture wastewater; hydraulic retention time; influent nitrate concentration; loofah sponge; solid phase denitrification; microbial community

Corresponding author: GONG Wangbao. E-mail: gwb@prfri.ac.cn

Funding projects: National Key R&D Program of China (2019YFD0900302); Fishery Economic Development of Guangdong Province, China (2019B13); China Agriculture Research System of MOF and MARA(CARS-45-21); Central Public-interest Scientific Institution Basal Research Fund, CAFS (2020TD58)