文章编号:1000-0615(2019)11-2359-13

DOI: 10.11964/jfc.20181011507

以谣感夜间灯光数据为基础的西北太平洋秋刀鱼渔船识别

浩', 刘 阳'*, 田永军', 刘世刚', 闫鲁鑫', 田 陈冠宇1, 李建超1, 李 渊2, 林龙山2

(1.中国海洋大学水产学院,渔业海洋学研究室,山东青岛 266003; 2. 自然资源部第三海洋研究所,福建厦门 361005)

摘要:研究和开发利用大洋性生物资源是实现我国海洋渔业可持续发展的重大战略需 求、西北太平洋秋刀鱼是近年来我国重点开发的大洋性渔业资源之一、因此利用卫星来 监测渔船时空分布动态成为了解秋刀鱼渔业资源变动的重要数据源。本研究采用峰值检 测和阈值分割等方法对西北太平洋夜间灯光数据进行识别,利用地理信息系统技术对渔 船位置信息和数量进行提取分析。通过西北太平洋秋刀鱼资源调查的渔捞日志和经过筛 选的北太平洋渔业委员会(NPFC)渔船列表数据对识别结果进行验证。结果显示,本研究 所用的夜间灯光渔船识别方法可以精确识别西北太平洋密集作业及外围分散作业的秋刀 鱼渔船。以此为基础可以有效地分析秋刀鱼渔场的时空变动。结合美国国家海洋和大气 管理局(NOAA)提供的海表温度(SST)数据绘制等温线,进一步分析作业渔场的时空变 化,发现夜间灯光渔船作业的温度范围随着秋刀鱼洄游而变化。2016年7—9月渔场的 SST波动较大是因为这一时期秋刀鱼在黑潮--亲潮广泛的交汇区域洄游,分布更为广 泛,9月之后作业渔场SST变动趋于稳定。该研究结果将来会对远洋渔场环境实时变化、 鱼群分布预测、渔船动态及法律支撑等提供有效信息。

关键词:秋刀鱼;夜间灯光渔船识别;遥感;夜间灯光数据;西北太平洋 中图分类号: S 931 文献标志码:A

西北太平洋是FAO划分的全球15个渔区中 潜在渔获量最高的海区,渔业资源丰富、开发 潜力巨大^[1]。黑潮和亲潮两大流系在西北太平洋 的交汇形成了锋面和涡流^[2],为海洋生物提供了 良好的生长环境,从而形成了世界上高产量的 海域^[3-4]。2016年西北太平洋渔获量为2 240万t, 占世界海洋捕捞总量的28.2%^[5]。

近年来西北太平洋周边国家陆续加大对西 北太平洋公海区域的捕捞力度,所捕获的经济 鱼种主要为巴特柔鱼(Ommastraphes bartrami)、 金枪鱼(Thunnus sp.)、秋刀鱼(Cololabis saira)、日 本鲭(Scomber japonicus)及远东拟沙丁鱼(Sardinops sagax)等^[6],作业方式主要为灯光诱捕,如灯光

鱿钓、灯光舷提网、灯光围网、灯光罩网等^[7-8]。 鉴于西北太平洋公海巨大的渔业开发潜力,该 海域已经发展成为我国远洋渔业投入渔船规模 较大的海域之一^[9]。目前我国在该海域进行灯光 鱿钓的渔船保持在185艘左右,年产量稳定在5万 t左右^[10];进行灯光围网捕捞日本鲭的渔船数量 为80艘左右;开始开发西北太平洋的秋刀鱼资源 后,我国秋刀鱼渔船从2012年的5艘增加到2016 年的60艘[11]。2015年7月10日北太平洋渔业委员 会(NPFC)成立后^[12], 欲制定相关渔业资源的捕捞 配额管理措施,西北太平洋公海的渔船数量将 会受到控制。因此开发一种夜间灯光渔船识别 方法可以为我国西北太平洋远洋渔业资源的开

收稿日期: 2018-10-24 修回日期: 2019-02-10

资助项目:中央高校基本科研业务费专项(201762015);中国博士后科学基金(187202);全球变化与海气相互作用专项(GASI-02-PAC-YDspr/sum/aut)

通信作者: 刘阳, E-mail: Yangliu315@ouc.edu.cn

发和管理提供科学支撑。在此背景下,利用夜 间遥感图像来判断远洋渔船数量和位置,无论 是对渔船作业信息的实时监控还是针对某一鱼 种的渔汛预报都有十分重要的作用。

早在20世纪70年代就有学者发现,利用星 载微光探测器可以监测灯光渔船^[13]。搭载了可见 光红外辐射仪(visible infrared imaging radiometer suite, VIIRS)的美国国家极轨合作伙伴卫星 (suomi national polar orbiting partnership, NPP)于 2011年10月28日成功发射。VIIRS具有22个对地 观测通道,其中白天/夜晚波段(day/night band, DNB)通道可以收集夜间灯光,因此能够探测渔 船夜间在海上作业发出的灯光^[14]。

目前国内外对于利用卫星数据提取夜间灯 光渔船的研究较少, Kiyofuji等^[15]利用夜间灯光 影像研究了日本海区域太平洋褶柔鱼(Todarodes pacificus)的迁移路线和渔场位置的变化; Waluda等^[16]利用卫星遥感数据对东太平洋夜间灯 光鱿钓船进行了提取,并分析了渔船的位置和 数量; Elvidge等^[17]设计了基于DNB数据的近海渔 船自动识别算法,并以此方法提取了印度尼西 亚海域的灯光渔船,探讨了爪哇海2014年8— 10月的渔船动态; Liu等^[18]发现VIIRS DNB数据可 以很好地识别日本周围捕捞秋刀鱼和鱿鱼的夜 间灯光渔船; Yamaguchi等^[19]提出了利用DNB图 像的辐射值和波长3.7 μm处的亮温值排除夜间灯 光渔船提取中云层干扰的方法,以此为基础预 测了南海渔船交通密度,之后又研究了南海渔 业和岛屿活动的时间变化; Cozzolino等^[20]提出了 一种基于灰度值转换的阿根廷鱿钓船的识别算 法,并识别了阿根廷专属经济区其他国家的非 法鱿钓船: Svah等^[21]利用最大熵模型和遥感数据 预测了太平洋秋刀鱼的潜在渔场; Syarifudin 等^[22]利用VIIRS-DNB夜间灯光数据研究了骨湾水 域中远洋渔业捕捞船的分布模式、捕捞活动指 数和规划手段;张思宇^[23]基于VIIRS DNB卫星数 据提取了南海夜间渔船作业点信息,采用重点 渔场分析策略,分析了南海夜间灯光渔场的月 季动态变化,从点、面、区域多个维度,动静 结合地分析了渔场时空动态变化规律以及南海 周边国家和地区夜间灯光捕捞的时空变化规 律;郭刚刚等^[24]在Elvidge的基础上提出了利用最 大熵阈值分割方法来提取DNB夜间灯光图像中 的夜间围网渔船,并分析了日本鲭渔船的作业 渔场; Oozeki等^[25]利用VIIRS DNB数据对日本专 属经济区外的非法、不报告、未管制渔船进行 了可靠预测。

综上所述,目前对于西北太平洋夜间灯光 渔船的研究大部分局限于针对某一鱼种的捕捞 渔船, 目不同研究提取的渔船数量差别较大。 在西北太平洋海区,日本鲭、柔鱼和秋刀鱼的 捕捞时间、区域部分重合,夜间灯光渔船有时 混杂在一起,因此不能将提取的渔船都认定为 同种渔船^[10, 25-26]。以往的研究对于检测作业间距 较大的渔船效果良好,但在实际的出海调查中 发现,秋刀鱼夜间作业渔船灯光变换频繁而目 有时聚集捕捞,作业间距为500 m左右甚至更 小,因此局部峰值检测算法提取远洋灯光渔船 会影响渔船识别的结果,在阿根廷鱿钓船的识 别中同样存在这一问题^[20]。目前还没有结合实 际调查站位的西北太平洋秋刀鱼渔船提取方法 的研究,因此本研究拟通过夜间灯光渔船检测 算法, 识别在西北太平洋海域作业的秋刀鱼渔 船并进行验证,为秋刀鱼及其他利用灯光进行 捕捞作业的大洋性鱼种的渔场研究提供技术支撑。

1 材料与方法

1.1 实验材料

卫星遥感数据 本研究采用的DNB传感 器数据记录(sensor data record, SDRs)提供所有波 段的辐射亮度信息,包括可见光和近红外波段 的反射率信息以及长波红外(LWIR)、短波红外 (SWIR)波段的亮度温度信息^[27]。DNB波段的光谱 范围为400~900 nm,空间分辨率为742 m,原始 辐射单位为W/(cm²×sr)^[28]。数据来源于美国国家 海洋和大气管理局(NOAA),网址(https://www. class.ncdc.noaa.gov)。海表温度(SST)数据由美国 NOAA地球系统研究实验室数理学部提供,分辨 率为0.25°×0.25°,网址(https://www.esrl.noaa.gov/ psd/data/gridded/tables/sst.html)。卫星遥感数据由 ENVI 5.3和ArcGIS 10.2软件处理。

NPFC渔船列表 用于数量验证的渔船信 息列表来源于NPFC, 网址(https://www.npfc.int/ compliance/vessels)。

渔业数据 秋刀鱼渔业信息数据由青岛中泰远洋渔业有限公司提供,信息船为舷提网灯光渔船,型号及设备均相同,船长78m,总吨

位1750t,所提供的渔业信息包括每天生产位置 及产量。本研究根据提供的渔业数据,计算了 各渔船的单位捕捞努力量渔获量(CPUE),CPUE 的单位为t/d,各渔船船名及作业时间如表1所 示,作业海域及站位见图1。

表 1 2016年秋刀鱼资源调查船信息

Tab. 1 Information of C. saira resource survey

boats in 2016		
船名	作业时间	
ship name	operation period	
鲁黄远渔105	2016.07.10-2016.11.27	
LU HUANG YUAN YU 105		
鲁黄远渔106	2016.07.02-2016.11.27	
LU HUANG YUAN YU 106		
鲁黄远渔107	2016.07.22-2016.11.22	
LU HUANG YUAN YU 107		
鲁黄远渔108	2016.07.17-2016.11.23	
LU HUANG YUAN YU 108		
鲁黄远渔115	2016.07.23-2016.11.27	
LU HUANG YUAN YU 115		
鲁黄远渔116	2016.07.28-2016.11.20	
LU HUANG YUAN YU 116		
鲁黄远渔117	2016.07.24-2016.11.27	
LU HUANG YUAN YU 117		
鲁黄远渔118	2016.08.01-2016.11.20	
I II HUANG YUAN VII 118		

注: 作业时间只是渔船到达渔场和离开渔场的日期,此期间由于受 天气影响并非每天都进行捕捞作业

Notes: the catch date is only the date when the fishing boats arrive at and leave the fishing ground, during this period, boats did not fish every day due to the weather

Fig. 1 Survey station distribution of *C. saira* resources in autumn 2016

1.2 研究方法

本研究将通过峰值检测和阈值分割对西北 太平洋夜间灯光渔船进行识别,之后利用 NPFC提供的渔船列表和中泰远洋渔业公司提供 的秋刀鱼渔捞日志对识别结果进行验证,最后 结合SST遥感数据研究2016年秋刀鱼作业渔场的 温度变化(图2)。

数据预处理 数据预处理包括数据选择、 几何校正、数据格式转换3个步骤。由于云层和

图 2 技术路线图

Fig. 2 Technology roadmap of this study

月光反射会对渔船识别造成很大干扰^[29],所以本研究选取西北太平洋秋刀鱼作业区域的无云新月夜间数据进行研究。DNB原始数据不包含像元的经纬度信息,首先对DNB原始数据进行GLT几何校正,使每一像元与其经纬度坐标相对应。然后转换其数据格式,方便之后的数据处理。

峰值中值指数计算 云雾的散射会使光 源周围的像元辐射值类似高斯分布,影响渔船 识别,因此本研究采用Elvidge等^[17]提出的峰值中 值指数(spike median index, SMI)来放大像元辐射 值与背景像元值之间的差异,减少误差。VIIRS DNB图像的像元辐射值表示辐射亮度,单位为 W/(cm²×sr),夜间灯光渔船的像元辐射值通常介 于10⁻¹¹~10⁻⁸。为了方便计算,将DNB图像的像元 辐射值放大10⁹倍。然后采用3×3中值滤波器对放 大后的图像进行中值滤波处理,达到将图像平 滑处理的目的。最后用放大了10⁹倍的DNB图像 减去中值滤波后的DNB图像得到SMI图像。

阈值分割 VIIRS DNB夜间图像背景像 元与发光像元之间的辐射值差异较大,提取辐 射值大于等于阈值的像元作为夜间灯光渔船。

NPFC渔船列表筛选 图3为渔船筛选流 程图,由于本研究只提取2016年西北太平洋公海 区域的夜间灯光渔船,因此排除2016年以后在西 北太平洋注册的渔船和200 t以下不具备远洋捕捞 能力的小型渔船。由于日本的渔船集中于日本 专属经济区海域作业^[30],加拿大渔船的作业区域 位于东太平洋,因此排除列表中日本和加拿大 的渔船。最后排除工厂母船、运输船、渔业研 究船等非渔业捕捞船只。

数量及位置验证 用筛选后的NPFC渔船 列表和渔捞日志中的实际作业站位验证DNB图 像中提取的夜间灯光渔船数量和位置。如果验 证通过,则将DNB数据中的渔船信息提取为矢 量文件,便于数据存储和进一步研究,如果验 证不通过,则重新选取阈值。

作业渔场温度区间提取 在ArcGIS中提 取每日SST遥感数据的等温线,温度区间为1℃。 叠加DNB图像中的每日灯光渔船作业位置和 SST等温线,获得每天的夜间灯光渔船作业的渔 场温度区间。

2 结果

2.1 峰值中值指数(SMI)图像

图4为2016年8月26日23时45分06秒时西北太 平洋的DNB灯光图像。可以清晰地看到此时灯 光渔船大多在公海进行捕捞作业,绿色区域B渔 船较多且密集作业,红色区域A渔船间距较大。 因此选取此时的DNB图像计算峰值中值指数, 证明SMI图像对于密集作业的灯光渔船同样有良 好的识别效果。图4中,a~c表明SMI图像可以很 好地去除作业间距较大的渔船光晕,提高发光 像元与海洋背景值的差异;d~f表明SMI图像对

图 3 渔船筛选流程图, 图中N表示否, Y表示是

Fig. 3 Flow chart of fishing boat detection, N is no, Y is yes

图 4 SMI效果图

a~c.大间距渔船的SMI效果图,d~f.密集作业渔船的SMI效果图;a和d为DNB原始图像,b和e为中值滤波图像,c和f为SMI图像

Fig. 4 Impression diagram of SMI

a-c are large spacing fishing boats, d-f are intensive fishing boats; a and d are original DNB images, b and e are median filter images, c and f are SMI images

于密集作业的渔船光晕也有很好的去除效果。 因此可以用基于SMI的峰值检测方法对西北太平 洋公海区域的夜间灯光渔船进行识别和提取。

2.2 NPFC渔船列表中夜间灯光渔船提取结果

NPFC渔船列表中,西北太平洋公海夜间灯 光渔船筛选结果如表2所示。共筛选出灯光渔船 476艘,其中中国大陆最多,为305艘;其次为中 国台湾,有97艘,大多数从事秋刀鱼捕捞作业; 俄罗斯、韩国、瓦努阿图的渔船数量分别为 44艘、26艘、4艘。中国、韩国、瓦努阿图的渔 船平均吨位都在1000 t以下;俄罗斯渔船的平均 吨位最大,为1318 t。总吨位上,中国大陆渔船 最大,为270 649 t;中国台湾和俄罗斯次之,分 别为95 456 t和57 985 t;韩国和瓦努阿图渔船总 吨位较小,分别为20 094 t和3 993 t。整个西北太 平洋公海区域渔船总吨位为448 177 t。

表 2 NPFC渔船列表中的西北太平洋夜间灯光渔船信息

 Tab. 2
 NPFC fishing boat list of Northwest Pacific night light fishing information

			-
国家或地区	灯光渔船数量	渔船总吨位/t	平均吨位/t
country or region	number of	gross tonnage	average tonnage
	fishing boats		
中国大陆	305	270 649	887
China			
俄罗斯	44	57 985	1 318
Russia			
韩国	26	20 094	773
Korea			
中国台湾	97	95 456	984
Taiwan, China			
瓦努阿图	4	3 993	998
Vanuatu			
合计	476	448 177	
total			

资料显示,目前我国在西北太平洋从事夜间灯光捕捞的渔船为325艘左右,这与渔船筛选结果相吻合^[10-11],因此可以利用从NPFC渔船列表中筛选出的476艘夜间灯光渔船来验证DNB数据

中的灯光渔船数量。

2.3 基于DNB数据的渔船识别及验证结果

将本研究中的方法用于2016年8月26日,西 北太平洋当地时间23时45分06秒的夜间灯光数 据,提取出410艘夜间灯光渔船,由于在探寻鱼 群过程中渔船的灯光并不全部打开,灯光亮度 不足会影响灯光渔船识别的结果,而且在实际 捕捞作业过程中,由于受到天气、海况、渔汛 等因素的影响,并非所有船只都出海进行捕 捞,往往实际作业渔船数要小于渔船列表中的 数量。因此本方法检测到的渔船数量符合实际, 位置验证结果如图5所示,本研究用同一时间的 渔捞日志对识别结果进行位置验证,结果显示 所检测的渔船位置与实际船位信息相重合,说 明基于DNB数据的西北太平洋夜间灯光渔船的 识别效果良好。

2.4 作业渔场温度变化

用经过验证的西北太平洋灯光渔船的位置 信息叠加SST图层可以得到秋刀鱼渔船作业的温 度范围(图5)。以此为基础分析每日渔场温度变 化,结果如图6所示。7月2日—7月10日渔场温度 不断下降,渔船大多在12°C等温线附近海域作 业,作业位置的SST区间为6~16°C;7月10日— 7月24日渔船作业位置的SST区间为5~11°C, 波动不大,渔船大多在8°C等温线附近作业; 7月24日—9月8日秋刀鱼渔船不断向SST更高的 区域移动,这一期间作业位置的SST区间为6~ 23°C;大部分渔船聚集在19°C等温线附近作 业;9月8日—10月底,秋刀鱼渔船作业大多位 于18°C等温线附近,作业区域的SST区间不断下 降;11月秋刀鱼渔船作业位置的SST区间大致在 10°C~19°C,相较于其他月份,11月秋刀鱼渔船 作业的温度区间更加广泛,11月2日、11月3日、 11月25日的作业温差都达到12℃。

全年来看,DNB数据识别的秋刀鱼渔船作 业区域的SST跨度较大,7月21日有几条渔船作 业的SST为5 ℃,而8月末9月初一些渔船作业位 置的SST高达23 ℃。

3 讨论

3.1 对于密集作业的渔船的识别

在对西北太平洋秋刀鱼资源进行调查的过

图 5 2016年8月26日夜间灯光渔船识别与位置验证

Fig. 5 Identification and verification of night light fishing boats in local time: August 26th

11 期

程中,发现秋刀鱼渔船在夜间聚集捕捞作业, 间距往往在500 m左右甚至更小,有时几海里 的范围内会聚集上百艘渔船。由于密集捕捞, VIIRS DNB图像中识别到的秋刀鱼渔船光源往往 聚为一团而非点状(图4-b)。之前对于夜间灯光渔 船识别的研究都未深入考虑这一问题,大多数 学者认为由于渔船光源的散射,应该提取3×3像 元范围内的局部最大辐射值作为灯光渔船。这 一方法对于分散作业的灯光渔船效果良好,但 对于密集作业的渔船会造成漏检。因此本研究 并未采用局部最大辐射值提取,而是采用SMI图 像来减小渔船光晕带来的误差,SMI图像对于西 北太平洋分散作业和密集作业的灯光渔船的光 晕去除都有良好的效果(图4)。

3.2 验证数据的搜集

在NPFC渔船信息尚未公开时,对于西北太 平洋夜间灯光渔船识别的验证只能依靠船舶监 测系统(vessel monitoring system, VMS)和船舶自 动识别系统(automatic identification system, AIS)。但这两种系统缺点明显,AIS和VMS系统 主要是针对航行船只而开发,由于密集作业时 渔船之间的雷达信号会互相干扰,因此有的船 只会在作业时关闭监测系统^[19,25]。西北太平洋公 海区域有着多个国家的作业渔船,而各个国家 之间的VMS数据并不共享^[24],这导致在使用验证 数据时只能对本国渔船进行验证,造成提取的 渔船数据信息不全,说服力不强。在NPFC的渔 船信息公开后,本研究提出了从NPFC渔船列表 中筛选西北太平洋公海区域夜间灯光渔船的方法,结果证明本研究筛选的渔船数量准确。相比于VMS和AIS数据,本研究所用的西北太平洋秋刀鱼渔船的渔捞日志可靠性最强,说服力最高。不同于VMS和AIS数据,渔捞日志的渔船坐标都是实时记录,与夜间捕捞位置几乎同步, 图5中渔捞日志的位置与提取的夜间灯光数据基本重合。证明了本研究提取的渔船准确性较高。

3.3 渔场及CPUE的时空变动

从DNB数据中提取每天的秋刀鱼渔船位置 图并绘制月合成图像,探究2016年秋刀鱼渔场的 时空变化。图7中各颜色点位分别表示2016年 7—11月识别的秋刀鱼渔船。全年分析,2016年 西北太平洋公海秋刀鱼渔船的主要作业位置集 中在38°~49°N,146°~164°E的俄罗斯和日本专属 经济区之外,7—8月渔船分布广泛,9—11月渔 船逐渐集中于俄罗斯和日本专属经济区之外并 逐渐从东北向西南方向移动。2016年7月秋刀鱼 渔场主要集中在41°~49°N,162°~164°E和41°N, 150°~155°E这2个区域附近。8月渔场分布更加广 泛,40°~49°N,150°~166°E的公海区域都有分 布。9月秋刀鱼渔船开始逐渐集中并向俄罗斯和

图 7 渔场的时空变化

日本专属经济区靠近,渔场主要集中在42°N, 150°~154°E和44°N,156°~159°E2个区域。10月 渔船开始逐渐沿着专属经济区从东北向西南方 向移动,渔场主要集中在146°~160°E俄罗斯和日 本专属经济区外侧。11月渔船继续南下,渔场主 要集中于40°N,146°~152°E附近,152°~156°E也 有零星秋刀鱼渔船分布。

2016年信息船作业位置及CPUE的时空变化 如图8所示,7月份信息船从43°N北上直到48°N附 近进行捕捞作业;8月中旬由于受台风影响,秋 刀鱼渔船又回到43°N附近作业;9月开始秋刀鱼 渔船逐渐向俄罗斯专属经济区附近靠拢并开始 密集作业;10月、11月秋刀鱼渔船作业位置基本 都位于42°N附近的公海区域,位置靠近专属经 济区。从渔船平均CPUE的月变化分析,7月和 8月CPUE较低,基本都在10 t/d以下。从9月中旬 开始直到11月初,随着渔船向专属经济区靠拢, CPUE大多在10 t/d以上,9月下旬到11月初,多 次CPUE达到30 t/d以上。其中9月20日、9月 26日、9月30日、10月12日、10月29日的CPUE都 大于50 t/d。

秋刀鱼的捕捞可以分为2个阶段,第一阶段

是7月初到8月末,这期间秋刀鱼渔船的作业位置 分布广泛,产量普遍较低,CPUE大多小于10 t/d; 第二阶段是9月初到11月中旬,这一阶段秋刀鱼 渔场转移到160°E以西,渔船沿着俄罗斯和日本 的专属经济区从东北不断向西南移动(图7,图8), 这一阶段秋刀鱼开始进入渔汛期,CPUE普遍较 高,甚至会出现单船日产量达到50 t以上的情况。

之前的研究已经证明秋刀鱼渔场位置以及 CPUE的时空变动与其生活史密切相关^[4,11,31]。本 研究中渔场位置以及CPUE的时空变动受秋刀鱼 的洄游所影响。7月到8月秋刀鱼在黑潮与亲潮交 汇区域北上索饵,上一年的冬生群体尚未进入 产卵期,因此这一阶段秋刀鱼的渔场位置分布 广泛且产量偏低。9月中下旬开始,秋刀鱼南下 到日本近海产卵。因此第二阶段渔场位置沿着 俄罗斯和日本专属经济区从东北往西南不断向 日本近岸靠近,这一时期秋刀鱼聚集于索饵场 到产卵场之间的洄游路径上,因此出现渔汛, 产量较高。

3.4 西北太平洋夜间灯光渔船的渔场温度

夜间灯光渔船作业的温度范围随秋刀鱼洄 游而变化。7月初到9月初这一阶段,秋刀鱼渔船

图 8 信息船捕捞位置及CPUE的时空变化

Fig. 8 Temporal and spatial variation of fishing location and CPUE of information boats

作业的SST区间为5~23 ℃,温差达到18 ℃,这 是因为这一时期秋刀鱼在黑潮—亲潮广泛的交 汇区域洄游,分布更为广泛[32]。夜间灯光渔船 7月开始随着秋刀鱼向北移动,8月后向南移动, 很好的对应了图6中作业温度在第一阶段先下降 后上升的现象。由于DNB图像中识别的秋刀鱼 渔船为夜间作业渔船, 识别的秋刀鱼渔船都为 开灯进行捕捞的渔船,可以表明该位置有秋刀 鱼。因此本研究利用灯光渔船判断SST区间.可 以发现7月秋刀鱼北上索饵过程中SST由16℃下 降到5℃,在48°N附近的索饵群体通常在12℃以 下的水温中,说明秋刀鱼为冷温性鱼类。8月之 后渔船作业位置SST逐渐升高,除了秋刀鱼洄游 路线南下之外也可能受气候影响而导致SST升 高。9月中下旬之后,虽然秋刀鱼产卵洄游不断 南下,但由于气温逐渐降低,因此渔场温度逐 渐降低,最后到11月稳定在10~18℃。

3.5 未来研究方向

云层和月光对夜间灯光渔船的识别影响较 大,虽然云掩膜可以有效去除遥感数据中的 云,但同时会将云层遮挡的渔船信息去掉,而 满月时云层反射的月光也会对夜间渔船的识别 带来干扰^[31]。Yamaguchi等^[19]发现通过对比 DNB图像和波长为3.7 μm的短波红外图像的亮温 信息可以减少部分云层干扰。

结合AIS数据、DNB渔船提取结果和从 NPFC渔船列表中筛选的夜间灯光渔船,可以定 位每艘夜间灯光渔船及其航行轨迹,此方法可 以定位和寻找西北太平洋公海区域未注册的非 法、不报告、未管制的渔船,为保护西北太平 洋渔业资源和维护我国国家权益提供支持。

4 结论

西北太平洋秋刀鱼渔船作业间距较近,不 适合采用Elvidge等^[17]提出的提取局部最大峰值算 法,SMI图像对于西北太平洋密集作业和分散作 业的夜间灯光渔船都具有良好的识别效果。在 西北太平洋资源调查的渔捞日志和从NPFC渔船 列表筛选出476艘灯光渔船良好的验证效果,说 明本研究提出的方法可以实现对西北太平洋公 海区域夜间灯光渔船的精准提取。对比图7和图8, 发现本研究所提出的西北太平洋秋刀鱼渔船的 识别方法可以极大的丰富渔船数据量,为研究 秋刀鱼渔场变迁提供数据支持。

2016年7—8月秋刀鱼渔场广泛分布于39°~ 49°N,150°~164°E的西北太平洋公海区域,这一 阶段CPUE普遍较低;9—11月秋刀鱼渔场转移 到俄罗斯和日本专属经济区附近并不断向西南 方向移动;9月下旬秋刀鱼开始进入渔汛期, CPUE大多在10 t/d以上,出现日产量在50 t以上 的高产情况。

秋刀鱼灯光渔业的渔场变换结果表明,夜 间灯光渔船作业的温度范围随着秋刀鱼洄游而 变化。2016年7—9月渔场的SST波动较大是因为 这一时期秋刀鱼在黑潮—亲潮广泛的交汇区域 洄游,分布更为广泛。9月之后作业渔场的 SST稳定在10~18 ℃。因此在研究西北太平洋远 洋渔业资源的渔场和资源量变动时,不同月份 应当分别考虑。

感谢青岛中泰远洋渔业有限公司以及鲁黄远 渔系列渔船各船船长及船员在取样调查过程中给予 的大力支持,特此谢忱。

参考文献:

- [1] 王秉和. 世界公海渔业资源及开发利用现状[J]. 齐鲁 渔业, 1998, 15(2): 29-31.
 Wang B H. Situation of exploitation and utilization of fishery resources in high seas[J]. Shandong Fisheries, 1998, 15(2): 29-31(in Chinese).
- [2] 邵全琴, 马巍巍, 陈卓奇, 等. 西北太平洋黑潮路径变 化与柔鱼CPUE的关系研究[J]. 海洋与湖沼, 2005, 36(2): 111-122.

Shao Q Q, Ma W W, Chen Z Q, *et al.* Relationship between Kuroshio meander pattern and *Ommastrephes bartrami* CPUE in Northwest Pacific Ocean[J]. Oceanologia et Limnologia Sinica, 2005, 36(2): 111-122(in Chinese).

- [3] 王文宇. GIS支持下的西北太平洋柔鱼资源与海洋环 境关系研究[D]. 北京: 中国科学院研究生院, 2005.
 Wang W Y. Study on the relationship between *Ommastrephes bartrami* resources and the marine environment in the Northwest Pacific based on GIS[D].
 Beijing: Graduate University of Chinese Academy of Sciences, 2005(in Chinese).
- [4] 晏磊. 北太平洋公海秋刀鱼渔场分布特征及其环境关

系[D]. 上海: 上海海洋大学, 2012.

Yan L. The relationship between the distribution of saury fishing ground and its environmental factors[D]. Shanghai: Shanghai Ocean University, 2012(in Chinese).

- [5] FAO. The State of World Fisheries and Aquaculture 2018- Meeting the Sustainable Development Goals[M]. Roma: FAO, 2018.
- [6] 王良明. 西北太平洋游泳动物种类组成及主要优势种的生物学特征[D]. 厦门: 国家海洋局第三海洋研究所, 2017.

Wang L M. The composition of nekton and biological characteristic of main dominant species in Northwestern Pacific Ocean[D]. Xiamen: Third Institute of Oceanography, State Oceanic Administration, 2017(in Chinese).

- [7] 孙明. 浅析中北太平洋公海渔业资源的开发利用[J]. 齐鲁渔业, 2007, 24(1): 45-46.
 Sun M. A brief analysis of the exploitation and utilization of high seas fishery resources in the Central and North Pacific Ocean[J]. Shandong Fisheries, 2007, 24(1): 45-46(in Chinese).
- [8] 祁斌.世界远洋渔船发展现状[J].船舶与配套, 2013(5):46-54.

Qi B. Development status of world ocean fishing vessels[J]. Ship and Marine Equipment, 2013(5): 46-54(in Chinese).

[9] 唐峰华,岳冬冬,熊敏思,等.《北太平洋公海渔业资源养护和管理公约》解读及中国远洋渔业应对策略[J].渔业信息与战略,2016,31(3):210-217. Tang F H, Yue D D, Xiong M S, et al. Interpretation of

convention on the conservation and management of high seas fisheries resources in the North Pacific Ocean and coping strategies from China oceanic fisheries[J]. Fishery Information & Strategy, 2016, 31(3): 210-217(in Chinese).

- [10] 樊伟. 卫星遥感渔场渔情分析应用研究--以西北太平 洋柔鱼渔业为例[D]. 上海: 华东师范大学, 2004.
 Fan W. A study on application of satellite remote sensing in marine fishing-ground analysis and fishing condition forecasting-a case of *Ommastrephes bartrami* fisheries in Northwest Pacific Ocean[D]. Shanghai: East China Normal University, 2004(in Chinese).
- [11] 王周雷.西北太平洋秋刀鱼捕捞技术初步研究[D].舟山:浙江海洋大学,2017.

Wang Z L. Preliminary research of the Western Pacific saury fishing technique[D]. Zhoushan: Zhejiang Ocean University, 2017(in Chinese).

 [12] 周爱忠,张勋,张禹,等.我国开发西北太平洋公海秋 刀鱼资源的SWOT分析与策略[J].现代渔业信息, 2010,25(3):8-11.

Zhou A Z, Zhang X, Zhang Y, *et al.* SWOT analysis and strategy for exploiting saury resource in high sea of Northwest Pacific Ocean by China[J]. Modern Fisheries Information, 2010, 25(3): 8-11(in Chinese).

- [13] Croft, Thomas A. Nighttime images of the earth from space[J]. Scientific American, 1978, 239(1): 86-98.
- [14] Shi K F, Huang C, Yu B L, et al. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas[J]. Remote Sensing Letters, 2014, 5(4): 358-366.
- [15] Kiyofuji H, Saitoh S I. Use of nighttime visible images to detect Japanese common squid *Todarodes pacificus* fishing areas and potential migration routes in the Sea of Japan[J]. Marine Ecology Progress Series, 2004, 276: 173-186.
- [16] Waluda C M, Yamashiro C, Elvidge C D, et al. Quantifying light-fishing for *Dosidicus gigas* in the Eastern Pacific using satellite remote sensing[J]. Remote Sensing of Environment, 2004, 91(2): 129-133.
- [17] Elvidge C D, Zhizhin M, Baugh K, et al. Automatic boat identification system for VIIRS low light imaging data[J]. Remote Sensing, 2015, 7(3): 3020-3036.
- [18] Liu Y, Saitoh S I, Hirawake T, et al. Detection of squid and pacific saury fishing vessels around Japan using VIIRS Day/Night band image[J]. Proceedings of the Asia-Pacific Advanced Network, 2015, 39: 28-39.
- [19] Yamaguchi T, Asanuma I, Park J G, et al. Estimation of vessel traffic density from Suomi NPP VIIRS day/night band[C]//OCEANS 2016 MTS/IEEE Monterey. Monterey, CA: IEEE, 2016.
- [20] Cozzolino E, Lasta C A. Use of VIIRS DNB satellite images to detect jigger ships involved in the *Illex* argentinus fishery[J]. Remote Sensing Applications: Society and Environment, 2016, 4: 167-178.
- [21] Syah A F, Saitoh S I, Alabia I D, et al. Detection of potential fishing zone for Pacific saury (*Cololabis saira*) using generalized additive model and remotely sensed data[J]. IOP Conference Series: Earth and Environmental

Science, 2017, 54: 012074.

- [22] Syarifudin U, Salman D, Ali S A, et al. Application of Viirs-Dnb satellite data to detect ship distribution patterns, fishing activity index and planning instrument of pelagic capture fisheries in bone bay waters[J]. International Journal of Science and Research, 2017, 6(6): 693-702.
- [23] 张思宇. 基于夜间灯光数据的南海渔业捕捞动态变化 研究[D]. 南京: 南京大学, 2017.

Zhang S Y. Research on fishing dynamic changes in the South China Sea using nighttime light data[D]. Nanjing: Nanjing University, 2017(in Chinese).

[24] 郭刚刚, 樊伟, 薛嘉伦, 等. 基于NPP/VIIRS夜光遥感影
 像的作业灯光围网渔船识别[J]. 农业工程学报, 2017, 33(10): 245-251.

Guo G G, Fan W, Xue J L, *et al.* Identification for operating pelagic light-fishing vessels based on NPP/VIIRS low light imaging data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 245-251(in Chinese).

- [25] Oozeki Y, Inagake D, Saito T, *et al.* Reliable estimation of IUU fishing catch amounts in the Northwestern Pacific adjacent to the Japanese EEZ: Potential for usage of satellite remote sensing images[J]. Marine Policy, 2018, 88: 64-74.
- [26] 马超, 庄之栋, 刘勇, 等. 西北太平洋公海灯光敷网渔 获组成及主要种类渔业生物学特性研究[J]. 渔业研究, 2018, 40(2): 141-147.

Ma C, Zhuang Z D, Liu Y, *et al.* Preliminary study on catch composition and biological characteristics of main species of light-liftnet in the Northwest Pacific Ocean[J]. Journal of Fisheries Research, 2018, 40(2): 141-147(in Chinese). [27] 马芮, 孙林, 袁广辉, 等. 可见光红外成像辐射仪数据
 林火识别算法研究[J]. 遥感信息, 2015, 30(4): 37-42, 48.

Ma R, Sun L, Yuan G H, *et al.* Technology and method of forest fire monitoring using NPP VIIRIS data[J].
Remote Sensing Information, 2015, 30(4): 37-42, 48(in Chinese).

- [28] Cao C Y, Xiong J, Blonski S, *et al.* Suomi NPP VIIRS sensor data record verification, validation, and long term performance monitoring[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(20): 11664-11678.
- Baugh K, Elvidge C D, Ghosh T, et al. Development of a 2009 stable lights product using DMSP-OLS data[J].
 Proceedings of the Asia-Pacific Advanced Network, 2010, 30: 114-131.
- [30] 缪圣赐. 俄罗斯、韩国、中国台湾等的渔船关注着利用西北太平洋公海的秋刀鱼资源[J]. 现代渔业信息,2010,25(1): 34-34.
 Miao S C. Fishing vessels from Russia, South Korea,Chinese Taiwan are concerned about the exploitation of

Pacific saury in the Northwest Pacific Ocean[J]. Fishery Information and Strategy, 2010, 25(1): 34-34(in Chinese).

- [31] Kopp T J, Thomas W, Heidinger A K, et al. The VIIRS cloud mask: progress in the first year of S - NPP toward a common cloud detection scheme[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(5): 2441-2456.
- [32] Tian Y J, Ueno Y, Suda M, et al. Decadal variability in the abundance of Pacific saury and its response to climatic/oceanic regime shifts in the northwestern subtropical Pacific during the last half century[J]. Journal of Marine Systems, 2004, 52(1-4): 235-257.

Detection of Pacific saury(*Cololabis saira*) fishing boats in the Northwest Pacific using satellite nighttime imaging data

TIAN Hao¹, LIU Yang^{1*}, TIAN Yongjun¹, LIU Shigang¹, YAN Luxin¹, CHEN Guanyu¹, LI Jianchao¹, LI Yuan², LIN Longshan²

(1. Laboratory Fisheries Oceanography, College of Fisheries, Ocean University of China, Qingdao 266003, China;
 2. Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China)

Abstract: Pacific saury (Cololabis saira) is one of the most important commercial pelagic fish species being harvested in the Northwestern Pacific Ocean region. Spatial and temporal dynamic monitoring of fishing boats has become an important data source for understanding the distributional dynamics of fisheries. Visible infrared imaging radiometer suite (VIIRS) Day/night band (DNB) night-time remote sensing images can be used to monitor night fishing boat lights. In this study, peak detection and threshold segmentation techniques were used to identify fishing boats employing DNB images in the Northwest Pacific. GIS tools were used to extract and analyze the fishing boat position and numbers. The fishing log of C. saira resources and the selected NPFC fishing boats list were used to validate the identified results. The results show that the method proposed in this study can effectively identify the location and operation status of C. saira fishing boats, and provide useful information for understanding the spatial distribution and dynamics of Pacific saury fishing zones in the northwest Pacific region. Sea surface temperature data provided by the National Oceanic and Atmospheric Administration (NOAA) were used to analyse temperature changes in the fishing ground of C. saira. The results showed that the SST range of lighting fishing boats changes with the migration of saury. From July to September 2016, the range of fishing ground SST fluctuated greatly because Pacific saury are widely distributed, making extensive migrations from subtropical to subarctic regions throughout the Kuroshio-Oyashio Currents transition zone. After September, the SST of the fishing ground tended to be stable. In the future, this information will be useful to forecast the potential fishing zone and to assess the fishing resources.

Key words: Cololabis saira; fishing boat identification; remote sensing; VIIRS/DNB; Northwest Pacific

Corresponding author: LIU Yang. E-mail: Yangliu315@ouc.edu.cn

Funding projects: Fundamental Research Funds for the Central Universities (201762015); China Postdoctoral Science Foundation (187202); National Program on Global Change and Air-sea Interaction (GASI-02-PAC-YDspr/sum/aut)