文章编号:1000-0615(2019)02-0483-09

缢蛏EGFR基因内含子1内SNP位点多态性与 生长性状相关性

卫侃韵', 谢淑媚', 王沈同', 陈宇宽', 牛东红^{1,2*}, 李家乐^{1,2,3}

(1.上海海洋大学,水产种质资源发掘与利用教育部重点实验室,上海 201306;
2.上海海洋大学,水产动物遗传育种中心上海市协同创新中心,上海 201306;
3.上海海洋大学,上海水产养殖工程技术研究中心,上海 201306)

摘要:为研究缢蛏表皮生长因子受体基因(epidermal growth factor receptor, *EGFR*)单核苷酸多态性(single nucleotide polymorphism, SNP)与生长性状(壳长、壳宽、壳高和体质量)的相关性。本实验利用直接测序法从缢蛏*EGFR*基因的第一个内含子序列中共筛选到17个SNP位点。卡方检验结果显示,在17个位点中,有13个位点符合Hardy-Weinberg平衡,位点多态性检测显示17个位点中有10个位点表现为中等多态性(0.25<*PIC*<0.5)。利用一般线性模型(general linear model,GLM)及多重比较对缢蛏*EGFR*基因中17个SNPs的多态性与生长性状(壳长、壳宽、壳高和体质量)进行相关性分析,结果显示,16个SNP位点均与缢蛏的壳长、壳宽、壳高及体质量呈显著性相关。由此可见,*EGFR*基因可作为缢蛏生长性状改良的候选辅助分子标记,并且为进一步研究其生长相关功能奠定基础。

关键词: 缢蛏; EGFR; 多态性; 生长性状

中图分类号:Q785; S968.3

缢蛏(Sinonovacula constricta)俗称蛏子,属 软体动物门(Mollusca)、瓣鳃纲(Lamellibranchia)、 帘蛤目(Veneroida)、竹蛏科(Solenidae)、缢蛏属 (Sinonovacula),是我国双壳经济贝类之一^[1]。近 年来,缢蛏人工养殖过程中种质退化的现象日 趋严重,养殖户们对生长快、养殖周期短的优 良缢蛏种质需求逐年增高。另外,贝类的生长 性状属于数量性状,其表型可能受基因和环境 的共同影响,这使得传统选育的有效性受到限 制^[2]。借助分子标记辅助选育手段,筛选与生长 有关的分子标记可以加快新品种的育成、缩短 育种年限,从而提高育种的效率^[3]。在诸多分子 标记中, SNP标记由于其遗传稳定性高、检测准 确性高等诸多优点^[4-5],已广泛应用于多种贝类 经济性状的辅助育种工作中^[6-8]。

在脊椎动物中,表皮生长因子受体(EGFR)

文献标志码:A

基因参与了细胞增殖^[9]、创伤修复^[10]、性腺发育^[11] 等过程;对于序列中SNP位点的研究比较多,主 要针对第一个内含子序列与癌症患者的关联性 分析^[12-13]。Jou等^[12]分析了不吸烟肺腺癌女性患者 和健康女性中EGFR的基因型和表现型,发现在 第一个内含子上有一个SNP位点与女性肺腺癌紧 密相关。孙静哲等^[13]也在EGFR基因的第一内含 子区上发现了一个SNP位点与胃癌的遗传易感性 相关。目前,关于EGFR基因在无脊椎动物中的 功能研究已有不少报道,主要集中在幼体发育^[14], 个体生长[15-16]和神经突触的生长[17]等方面,但对 于其基因内部SNP位点的研究较少。因此,本研 究将缢蛏EGFR基因作为候选基因,通过直接测 序法检测其第一个内含子中突变的位点,结合 缢蛏早期生长性状(壳长、壳宽、壳高和体质 量)进行关联分析, 意在筛选EGFR基因中与缢蛏

收稿日期: 2017-11-16 修回日期: 2018-04-25

资助项目:国家自然科学基金(31472278);国家"八六三"高技术研究发展计划(2012AA10A400);上海知识服务平台(ZF1206) 通信作者:牛东红,E-mail: dhniu@shou.edu.cn

生长性状相关的分子标记,从而加快缢蛏快速 生长新品种选育的进程。

1 材料与方法

1.1 实验样本与数据采集

2016年10月,在浙江三门东航水产养殖基 地进行缢蛏苗种的人工繁育工作。2017年5月, 随机选取200只同一批次繁殖的7月龄缢蛏用于生 长性状的关联分析,通过数显的游标卡尺(精确 到0.002 cm)测量缢蛏的壳长、壳宽、壳高,通过 电子天平(精确到0.01 g)称量缢蛏的体质量,并 取肌肉组织置于无水乙醇中,-20 °C保存。

1.2 样本DNA提取

利用海洋动物组织基因组DNA提取试剂 盒 [天根生化科技(北京)有限公司]提取DNA, 1.5%琼脂糖凝胶电泳检测DNA的完整性,用 NanoDrop 2000紫外分光光度计检测DNA的纯度 和浓度,并稀释至100 ng/μL,保存于-20 °C备用。

1.3 缢蛏EGFR基因变异位点筛选及验证

利用本实验室已分离的缢蛏EGFR基因的 cDNA序列(GenBank登录号: MF958947), 通过与 本实验已有的部分缢蛏基因组序列进行对比, 以区分基因的内含子和外显子区域。通过Primer 5.0软件设计引物,在基因的外显子1上设计上 游,在外显子2上设计下游,用于扩增内含子1, 上游引物F1: 5'-CTCAACACCATCCGCTG-3', 下游引物R1: 5'-GAAGCCCCCAGACTCTTA-3'。 首先利用体质量排序前六位的6只缢蛏 [(4.34± 0.41)g]和体质量排序后六位的6只缢蛏[(0.74± 0.17)g]的基因组DNA为模板,进行PCR扩增预实 验。PCR反应体系体积为20 µL,其中2×Taq PCR Mastermix 10 µL [天根生化科技(北京)有限公司], 上下游引物各1 µL (10 µmol/L), 模板DNA 2 µL (100 ng/µL), 去离子水 6 µL。反应程序: 94 ℃预 变性3 min; 94 °C变性30 s, 53 °C退火30 s, 72 °C延伸50 s, 共35个循环; 72 °C终延伸10 min。 经1%的琼脂糖凝胶电泳检测,对检测合格的 PCR扩增产物交由上海迈普生物科技有限公司测 序,根据直接测序的峰图,预测SNP变异位点, 以便验证剩余188只缢蛏基因组DNA的SNP位 点,引物及PCR反应体系条件同上。

1.4 序列分析及数据处理

使用BioEdit软件^[18]筛选缢蛏EGFR基因的 SNPs,采用SHEsis^[19]软件分析单倍型,利用 Cervus 3.0软件^[20]计算各变异位点的观测杂合度 (H_o)、期望杂合度(H_e)、有效等位基因(N_e)及多态 性信息含量(PIC)。利用Excel软件整理基因型及 生长数据,使用SPSS 18.0软件^[21]中的一般线性模 型(GLM)对缢蛏的壳长、壳宽、壳高和体质量进 行相关性分析,多重比较显著性采用Duncan 法。统计模型:

 $Y_{ij} = \mu + B_i + e_{ij}$

式中, Y_{ij} 为某性状第i个变异位点(或位点组合)第 j只个体观测值; μ 为某性状实验观测所有个体的 平均值; B_i 为第i个变异位点(或位点组合)的效应 值; e_{ii} 为对应于观测值的随机残差效应。

2 结果

2.1 缢蛏EGFR基因序列SNP筛选

对缢蛭12个个体*EGFR*基因序列测序拼接, 通过与NCBI上*EGFR*全长基因源序列的对比,共 获得*EGFR*基因序列长度945 bp,其中内含子序 列长度662 bp,共发现17个变异位点。为方便统 计,分别用SNP 1~SNP 17 代表位点:T785A、 A911C、G966A、G996A、A1068G、G1092A、 A1125T、T1193A、T1207G、G1262A、T1281A、 C1293T、C1301A、C1314T、T1328C、A1359T、 C1371G(表1)。其中SNP 3、4、5、6、10、12、 14、15为转换变异类型,其余为颠换变异类型 (表2)。

2.2 缢蛏EGFR基因序列SNP位点的验证及单 倍型分析

用200只缢蛏基因组DNA对预筛选的变异位 点进行验证,剔除测序失败的个体,共获得 168只缢蛏的有效序列,并分析序列中17个位点 的基因型、基因型频率、等位基因、等位基因 频率等(表1)。其中,SNP 1~SNP 17所对应的优 势等位基因分别为T、A、G、G、A、G、A、 T、T、G、T、C、C、C、T、A、C。经卡方检验结 果显示,SNP 3、4、11、13位点显著偏离Hardy-Weinberg平衡(P < 0.05)。单倍型分析中,剔除频 率小于1%的组合,共发现13种单倍型;其中 2期

表 1 缢蛏 EGFR 基因 SNPs 位 点 基因型及基因频率								
	Tab	.1 Genotyp	e and gene fre	quency of SNPs sites in	n <i>EGFR</i> gene o	of S. constricta		
位点 sites	位置 posiotion	基因型	样本数/个 number	基因型频率/% genotype frequency	等位基因 allele	等位基因频率/% allele frequency	χ^2 (P值) χ^2 (P value)	
SNP 1	785	TT	145	86.83	Т	93.41	0.785(0.376)	
		AT	22	13.17	А	6.59		
SNP 2	911	AA	110	65.87	А	79.94	3.594(0.058)	
		CC	11	6.59	С	20.66		
		AC	47	28.14				
SNP 3	966	GG	87	51.79	G	75.89	16.708(0.000)	
		GA	81	48.21	А	24.11		
SNP 4	996	GG	151	89.88	G	92.56	65.412(0.000)	
		GA	9	5.36	А	7.44		
		AA	8	4.76				
SNP 5	1 068	AA	131	78.44	А	89.22	0.727(0.394)	
		GA	36	21.56	G	10.78		
SNP 6	1 092	GG	126	75.00	G	87.50	3.338(0.068)	
		AG	42	25.00	А	12.50		
SNP 7	1 125	AA	157	93.45	А	96.73	0.174(0.676)	
		ТА	11	6.55	Т	3.27		
SNP 8	1 193	TT	144	86.23	Т	93.11	0.014(0.905)	
		ТА	23	13.77	А	6.89		
SNP 9	1 207	TT	84	50.00	Т	72.62	3.052(0.081)	
		TG	76	45.24	G	27.38		
		GG	8	4.76				
SNP 10	1 262	GA	83	49.40	G	53.87	0.013(0.908)	
		GG	49	29.17	А	46.13		
		AA	36	21.43				
SNP 11	1 281	ТА	96	57.14	А	38.10	7.312(0.006)	
		AA	16	9.52	Т	61.90		
		TT	56	33.33				
SNP 12	1 293	СТ	94	55.95	Т	52.98	2.421(0.12)	
		TT	42	25.00	С	47.02		
		CC	32	19.05				
SNP 13	1 301	CC	70	41.67	С	60.71	7.024(0.008)	
		CA	64	38.10	А	39.29		
		AA	34	20.24				
SNP 14	1 314	СТ	94	55.95	Т	53.57	2.492(0.114)	
		TT	43	25.60	С	46.43		
		CC	31	18.45				
SNP 15	1 328	TT	122	73.94	Т	86.97	0.101(0.75)	
		СТ	43	26.06	С	13.03		

AA

AT

CC

CG

SNP 16

SNP 17

1 359

1 371

注: $\chi_{0.01(2)}^2$ =9.21, $\chi_{0.05(2)}^2$ =5.99, χ^2 值为对不同基因型分布的Hardy-Weinberg平衡检验值 Notes: $\chi_{0.01(2)}^2$ =9.21, $\chi_{0.05(2)}^2$ =5.99, the value of χ^2 is Hardy-Weinberg equilibrium test value for different genotype distribution

65.48

34.52

68.29

31.71

А

Т

С

G

82.74

17.26

84.15

15.85

110

58

112

52

0.614(0.433)

0.459(0.498)

表 2	缢蛏EGFR基因型的变异类型及总数

 Tab. 2
 Variation type and number of genotype in

 5
 constraints ECED game

	5. CONSTITUTA L'OF N gene									
ą	 安异类型	基因型	基因型位点							
var	iation type	genotype	sites	number						
转换	transition	GA	SNP 3、4、5、6、10	5						
		СТ	SNP 12、14、15	3						
颠换	transversion	TA	SNP 1、7、8、11、16	5						
		AC	SNP 2、13	2						
		TG	SNP 9	1						
		CG	SNP 17	1						

Hap1 (18.10%)所占的比例最高, Hap13 (1.0%) 所占比例最低(表3)。

2.3 缢蛏EGFR基因序列SNP位点多态性分析

通过Popgene处理EGFR基因上SNP位点分型 结果,得到EGFR基因部分序列各位点在群体中 的遗传参数(表4)。根据Botstein等^[22]划分的原则, 0.25<PIC<0.5为中度多态,PIC<0.25为低度多 态,发现EGFR基因上的17个SNP位点中,除了 SNP1、4、5、6、7、8和15为低度多态位点外, 其他10个SNP位点均为中度多态位点。统计结果 显示,观测杂合度的数值范围为0.054~0.571,期 望杂合度的数值范围为0.064~0.499, 有效等位基因的数值范围为1.067~1.993。

2.4 SNPs位点与生长性状的关联分析

对经筛选及验证得到的17个SNPs位点与缢 蛏的壳长、壳宽、壳高和体质量进行相关性分 析。除SNP 7位点的基因型在缢蛏壳长、壳宽、 壳高和体质量水平上无显著性差异外,其他 SNP位点在缢蛏壳长、壳宽、壳高和体质量水平 上均存在显著性差异(P<0.05)(表5)。通过多重对 比发现,6个SNP位点的野生型个体的壳长、壳 宽、壳高和体质量均显著高于纯合突变型和杂 合突变型(P<0.05),包括SNP 2 (AA)、SNP 3 (GG)、SNP 5 (AA)、SNP 8 (TT)、SNP 16 (AA)和 SNP 17 (CC)位点。SNP 4 (GG)和SNP 9 (TT)位点 的野生型个体的壳长、壳宽、壳高和体质量均 显著高于纯合突变型个体(P<0.05), 但与杂合突 变型之间差异不显著。而SNP 10 (AA)、SNP 11 (AA)、SNP 12 (CC)、SNP 13 (AA)和SNP 14 (TT) 位点纯合突变型个体的壳长、壳宽、壳高和体 质量均显著高于野生型和杂合突变型(P<0.05)。 SNP 1 (AT)、SNP 6 (AG)和SNP 15 (CT)位点杂合 突变型个体的壳长、壳宽、壳高和体质量均显 著高于野生型和纯合突变型(P<0.05)。

表 3 *EGFR*基因第一个内含子SNPs位点单倍型分析 Tab. 3 Haplotype analysis of SNPs in the intron 1 of *EGFR* gene

					-	•••						8				
单倍型	单倍型 SNP 位点 SNP locus							频率/%								
haplotype	SNP1	SNP2	SNP5	SNP6	SNP7	SNP8	SNP9	SNP10	SNP11	SNP12	SNP13	SNP14	SNP15	SNP16	SNP17	frequency
Halp1	Т	А	А	G	А	Т	Т	G	Т	Т	С	С	Т	А	С	18.10
Halp2	Т	А	А	G	А	Т	Т	А	А	С	А	Т	Т	А	С	15.60
Halp3	Т	А	А	А	А	Т	G	G	Т	С	А	Т	С	А	С	11.50
Halp4	Т	А	А	G	А	Т	Т	А	Т	Т	С	С	Т	А	С	10.60
Halp5	Т	С	А	G	А	А	Т	А	Т	Т	С	С	Т	Т	G	6.20
Halp6	Т	С	G	G	А	Т	G	G	А	С	С	Т	Т	Т	G	6.10
Halp7	А	А	А	G	А	Т	Т	А	А	С	А	Т	Т	А	С	5.80
Halp8	Т	С	А	G	А	Т	Т	G	Т	Т	С	С	Т	А	С	3.00
Halp9	Т	А	G	G	А	Т	G	G	А	С	С	Т	Т	А	С	1.60
Halp10	Т	А	А	G	А	Т	Т	G	Т	Т	С	С	Т	Т	С	1.50
Halp11	Т	А	А	G	А	Т	Т	G	А	Т	А	Т	Т	А	С	1.50
Halp12	Т	А	А	G	Т	Т	Т	G	А	Т	А	Т	Т	А	С	1.20
Halp13	Т	А	А	G	А	Т	Т	А	Т	Т	С	С	Т	Т	G	1.00

Tab. 4	Populat	ion genetic	parameters of v	variable sites
位点 观	观测杂合度	期望杂合度	有效等位基因数	多态性信息含量
sites	Но	He	Ne	PIC
SNP 1	0.131	0.123	1.139	0.115
SNP 2	0.280	0.327	1.484	0.273
SNP 3	0.482	0.367	1.577	0.299
SNP 4	0.054	0.138	1.160	0.128
SNP 5	0.214	0.201	1.251	0.180
SNP 6	0.250	0.219	1.280	0.195
SNP 7	0.065	0.064	1.067	0.061
SNP 8	0.137	0.138	1.159	0.128
SNP 9	0.452	0.399	1.660	0.319
SNP 10	0.494	0.498	1.988	0.373
SNP 11	0.571	0.473	1.893	0.360
SNP 12	0.560	0.500	1.993	0.374
SNP 13	0.381	0.478	1.912	0.363
SNP 14	0.560	0.499	1.989	0.374
SNP 15	0.256	0.250	1.332	0.218
SNP 16	0.298	0.317	1.461	0.266
SNP 17	0.310	0.294	1.415	0.250

表 4 变异位点的群体遗传参数

3 讨论

EGFR是一种具有酪氨酸激酶活性的受体, 具有促进细胞增殖、个体发育和生长等的重要 作用^[23]。在静水锥实螺(Lymnaea stagnalis)中发现 EGFR基因在神经组织中高表达,并且通过体外 干扰EGFR基因的表达后,神经生长的速率明显 变缓^[17];在罗氏沼虾(Macrobrachium rosenbergii)^[15]和蟋蟀(Gryllus bimaculatus)^[16]中,通过 dsRNA干扰技术,发现EGFR基因沉默组的个体 明显比对照组个体小;在长牡蛎(Crassostrea gigas)中发现EGFR基因在外套膜创伤的前期高表 达,说明该基因可能参与了早期伤口的修复[24]。 本实验通过对缢蛏EGFR基因序列的扩增及测 序,发现该序列存在17个SNP位点。位点的数量 显著高于人类基因组研究中指出的100个内含子 碱基中含有1个SNP位点的结论^[25],这可能是由 于内含子不参与氨基酸编码,与外显子相比其受 到的选择压力较小,变异更容易积累造成的^[26]。 在本研究中对17个SNP位点进行卡方检验,结果 显示,76%左右的位点均未显著偏离Hardy-Weinberg 平衡,且位点的多态性信息含量为0.25~0.5。据 Botstein等^[22]划分的标准,当0.25<*PIC*<0.5,该位 点为中度多态位点,说明除了SNP1、4、5~8、 15位点,其他10个SNP位点能够提供一定量的遗 传信息,并且从群体遗传参数上可以看出该群 体的遗传多样性较为丰富,如果这些变异位点 能与生长性状关联,将有可能用于分子标记辅 助育种。

生长性状是水产动物遗传育种最有价值的 性状之一,主要通过增加生长速率起到提高经济 效益的目的[27]。通过17个位点与生长性状的关联 性分析,发现6个位点的野生型个体在生长性状 (壳长、壳宽、壳高和体质量)水平上均显著高于 纯合突变型和杂合突变型。2个位点的野生型个 体的各生长性状均显著高于纯合突变型个体, 但与杂合突变型个体差异不显著。5个位点的纯 合突变型个体的各生长性状均显著高于野生型 和杂合突变型。3个位点的杂合突变型个体在各 生长性状水平上都显著高于野生型和纯合突变 型。1个位点的各基因型在生长性状上均无显著 性差异。有研究表明,隐藏在内含子中的突变 可能在转录和mRNA剪切过程中发挥作用^[28]。 在有鳍鱼类^[29]中, GHRH基因(生长素释放激素, growth hormone releasing hormone)是研究生长性状 的候选基因,研究发现在北极红点鲑(Salvelinus alpinus)^[30]的GHRH基因中,其第4个内含子附近 就存在一处可变剪切,并且在发生剪切的序列 中,发现了一处与生长显著相关的SNP位点。在 缢蛏EGFR基因的编码区域上就存在可变剪切(登 录号, Sc-EGFR-1a: MF958947; Sc-EGFR-1b: MF958948)。因此, 缢蛏EGFR基因可能通过内含 子区域的可变剪切而拥有多种转录本,从而在 基因水平调控个体间生长性状的差异表达。在 相关研究中[31],在单位点相关性分析的基础上进 一步分析双倍型组合与性状的关联性往往更加 能说明问题,然而在单倍型组合中,比例最高 的Hap1组合仅占18.10%,造成双倍型组合的结 果小于总样本的5%,因此舍弃了双倍型组合的 分析。

综上所述, 缢蛏EGFR基因第一个内含子上 16个SNP位点的多态性对生长性状存在显著性影 响, 可作为缢蛏生长性状辅助选育的分子标 记, 并且为进一步研究其生长相关功能提供了 参考依据。

表 5	; 缢蛏EGFR基因部分序列SNPs不同基因型与生长	:性状的关联分析
-----	----------------------------	----------

Tab. 5 Association of EGFR gene partial sequence polymorphism with growth traits in S. constricta

位点	位置	基因型	样本数/个	壳长/cm	壳宽/cm	売高/cm	体质量/g
SILES	position 795	genotype	number	shell length 33.42 ± 3.05^{a}	shell width 11.73 ± 1.46^{a}	7 26+0 92ª	$\frac{\text{body weight}}{1.96\pm0.72^{a}}$
SNP I	/85		145	33.42 ± 3.93	11.73 ± 1.40 13.08+1.14 ^b	7.20±0.93	1.96 ± 0.73
SNP 2	011		110	37.09±3.300	12.52 ± 1.14	7.72 ± 0.87^{a}	2.38 ± 0.75^{a}
5111 2	511		11	29.72+3.68b	10.35 ± 1.11^{b}	6 69±0 80 ^b	1.36 ± 0.49^{b}
			11	21.10+3.30b	10.84 ± 1.20^{b}	6.69±0.72 ^b	1.50±0.49 ^b
SNP 3	966	GG	87	$34.81+3.60^{a}$	$12.19\pm1.31^{\circ}$	7.52 ± 0.93^{a}	$2.20\pm0.75^{\circ}$
5111 5	200	GA	81	32 91+4 34 ^b	$11.60\pm1.60^{\text{b}}$	7.32±0.95	1.92+0.83 ^b
SND 4	006	GG	151	34.17 ± 4.06^{a}	12.00 ± 1.00	7.20 ± 0.90^{a}	$2.12\pm0.80^{\circ}$
5111 4	<i>))</i> 0	GA	0	$31.47+3.37^{a}$	$11.10+1.26^{a}$	6 87+1 14 ^a	1.62 ± 0.72^{a}
			9	20 72+2 72 ^b	10.28±1.02 ^b	6.45 ± 0.48^{b}	1.31±0.36 ^b
SND 5	1.068		0	2).72±2.72	12 20+1 31ª	7.58 ± 0.88^{a}	$2.26\pm0.76^{\circ}$
SINF 5	1 008	AA CA	26	30 22+3 78 ^b	10 56+1 33 ^b	6 60+0 85 ^b	1.40+0.53 ^b
SND 6	1.002	GA	126	33.22 ± 3.78	11.66±1.52ª	7 22+0 96ª	1.40 ± 0.33
SINF 0	1 092		120	25 08+2 06 ^b	12.67±1.06 ^b	7.23±0.90	1.94 ± 0.79
SNP 7	1 125	AG	42	33.82+4.10	11.00+1.49	7.35+0.96	2.46±0.70
5111 /	1 125	ТА	11	34 89+3 81	12.06+1.45	7.59±0.98	2.00±0.31
CND 9	1 102	TT	144	24 28+4 08ª	12.11 ± 1.47^{a}	7.57±0.07ª	$2.20\pm0.70^{\circ}$
SINP 8	1 193		144	34.36 ± 4.08	12.11±1.47	$7.4/\pm0.9/$	2.17 ± 0.80
SND 0	1 207		23	30.89±2.05	10.04±0.85	7.51 ± 0.87^{a}	$2.10\pm0.78^{\circ}$
SNP 9	1 207	TC	84	34.36±3.04	10.72+1.26	(94+0 97 ^a	2.19±0.78
			/6	30.79 ± 3.97	10.72 ± 1.36	0.84 ± 0.87	1.31 ± 0.36
CNID 10	1.2(2	GG	8	33.39±4.31	11.00+1.41	7.23±1.02	2.05+0.74
SNP 10	1 262	GA	83	33.90 ± 3.70	11.90±1.41	7.39±0.88	2.05±0.74
		GG	49	32.34 ± 4.40	11.32 ± 1.38 $12.72 \pm 1.15^{\circ}$	7.01±1.03	1.78 ± 0.73
CNID 11	1 201	AA	30	22.74+4.27 ^a	12.73 ± 1.13	7.79±0.83	2.30±0.80
SNP 11	1 281	IA	96	33./4±4.3/	11.88±1.30	7.33±1.00	2.07 ± 0.83
		AA	16	37.32 ± 2.87	13.18±0.88	8.22±0.55	2.8±0.67
(NID 10	1 202		56	33.13 ± 3.29	11.60 ± 1.31	7.13±0.84	1.85±0.04
SNP 12	1 293		94	33.30 ± 3.97	11.81 ± 1.43	7.24±0.91	1.99±0.73
			42	32.33±3.38 36.82±2.60b	11.32 ± 1.34	/.09±0.89	1.//±0.0/
(D) ID 10	1 201		32	30.82±3.08	12.98±1.25	8.09±0.82	2.71±0.80
SNP 13	1 301		70	$31.12\pm3.51^{\circ}$	10.83 ± 1.26	6.80±0.85	1.52±0.55
		CA	64	35.07±3.01°	$12.42\pm1.12^{\circ}$	7.54±0.78	2.27±0.66
		AA	34	$37.40\pm3.07^{\circ}$	13.17±0.94	8.21±0.68	2.82±0.69*
SNP 14	1 314	CT	94	33.6/±3.86°	11.8/±1.44 [±]	7.29±0.90°	2.02 ± 0.72^{4}
		TT	43	36.31±3.99°	12.78±1.30°	7.94±0.90°	2.58±0.82°
() () () () () () () () () () () () () (CC	31	31.22±2.85°	10.82±1.08°	6.79±0.77°	1.50±0.50°
SNP 15	1 328	TT	122	33.25±4.17"	11.6/±1.52°	/.24±0.96°	1.95±0.79"
		СТ	43	35.73±3.33°	12.58±1.2°	7./2±0.88°	2.42±0.74°
SNP 16	1 359	AA	110	$35.40\pm3.42^{\circ}$	12.48±1.25°	7.68±0.85°	2.36±0.75°
0.15.15		AT	58	31.04±3.71°	10.82±1.29°	6. / /±0.8 /°	1.52±0.56°
SNP 17	1 371	CC	112	35.38±3.43 ^ª	12.50 ± 1.24^{a}	7.68±0.86 ^a	2.36±0.74 ^a
		CG	52	30.52±3.32°	10.60±1.11°	6.64±0.73°	1.41±0.44°

注: 同一位点中同列的不同小写字母表示差异显著(P<0.05)

Notes: different letters indicate significant difference (P<0.05)

参考文献:

- [1] 徐凤山,张素萍,王少青.中国海产双壳类图志[M].北京:科学出版社, 2008: 211-213.
 Xu F S, Zhang S P, Wang S Q. An Illustrated Bivalvia Mollusca Fauna of China Seas[M]. Beijing: Science Press, 2008: 211-213(in Chinese).
- [2] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(21): 9828-9832.
- [3] 刘晓慧, 王义权. 分子标记技术在水产动物研究中的
 应用[J]. 厦门大学学报(自然科学版), 2008, 47(S2):
 228-231.

Liu X H, Wang Y X. The applications of molecular marker in the study on aquatic animals[J]. Journal of Xiamen University (Natural Science Edition), 2008, 47(S2): 228-231(in Chinese).

- [4] 谭新, 童金苟. SNPs及其在水产动物遗传学与育种学研究中的应用[J]. 水生生物学报, 2011, 35(2): 348-354.
 Tan X, Tong J G. SNPs and their applications in studies on genetics and breeding of aquaculture animals[J]. Acta Hydrobiologica Sinica, 2011, 35(2): 348-354(in Chinese).
- [5] Syvänen A C. Accessing genetic variation: genotyping single nucleotide polymorphisms[J]. Nature Reviews Genetics, 2001, 2(12): 930-942.
- [6] 谢淑娟, 牛东红, 阮海灯, 等. 缢蛏IGFBP基因结构及生长性状相关SNP筛选[J]. 水产学报, 2015, 39(6): 799-809.

Xie S M, Niu D H, Ruan H D, *et al.* Molecular characterization of *IGFBP* and association analysis with growth traits in the razor clam *Sinonovacula constricta*[J]. Journal of Fisheries of China, 2015, 39(6): 799-809(in Chinese).

- [7] Niu D H, Wang L, Bai Z Y, *et al.* Identification and expression characterization of the *Myostatin (MSTN)* gene and association analysis with growth traits in the razor clam *Sinonovacula constricta*[J]. Gene, 2015, 555(2): 297-304.
- [8] 韩学凯,陈夏君,白志毅,等.三角帆蚌HcTyr基因内壳
 色性状相关SNP筛选及图谱定位[J].水产学报,2017,

41(7): 1044-1053.

Han X K, Chen X J, Bai Z Y, *et al.* Detection of shell nacre colour-related SNP and gene mapping of *HcTyr* gene in *Hyriopsis cumingii*[J]. Journal of Fisheries of China, 2017, 41(7): 1044-1053(in Chinese).

- [9] Song Z, Fusco J, Zimmerman R, *et al.* Epidermal growth factor receptor signaling regulates β cell proliferation in adult mice[J]. Journal of Biological Chemistry, 2016, 291(43): 22630-22637.
- [10] Zhou X J, Zhang W, Yao Q S, *et al.* Exosome production and its regulation of EGFR during wound healing in renal tubular cells[J]. American Journal of Physiology-Renal Physiology, 2017, 312(6): F963-F970.
- [11] Kaloğlu C, Bulut H E, Onarlioğlu B, et al. Epidermal growth factor receptor (EGFR) immunolocalization in the male rat reproductive tract during pre-and postnatal periods[J]. Turkish Journal of Veterinary & Animal Sciences, 2000, 24(5): 501-509.
- [12] Jou Y S, Lo Y L, Hsiao C F, et al. Association of an EGFR intron 1 SNP with never-smoking female lung adenocarcinoma patients[J]. Lung Cancer, 2009, 64(3): 251-256.
- [13] 孙静哲, 胡妮娅, 易金萍, 等. EGFR基因rs763317多态 性与胃癌遗传易感的相关性研究[J]. 中华肿瘤防治杂 志, 2010, 17(10): 724-727.
 Sun J Z, Hu N Y, Yi J P, *et al.* Relationship of EGFR gene rs763317 single nucleotide polymorphism with genetic susceptibility of gastric cancer[J]. Chinese Journal of Cancer Prevention and Treatment, 2010, 17(10): 724-727(in Chinese).
- [14] 李霞, 王雪, 秦艳杰, 等. 仿刺参EGFR基因的克隆与表达分析[J]. 水产学报, 2012, 36(1): 41-49.
 Li X, Wang X, Qin Y J, et al. Cloning and expression analysis of the EGFR gene in Apostichopus japonicus[J].
 Journal of Fisheries of China, 2012, 36(1): 41-49(in Chinese).
- [15] Sharabi O, Ventura T, Manor R, et al. Epidermal growth factor receptor in the prawn Macrobrachium rosenbergii: function and putative signaling cascade[J].
 Endocrinology, 2013, 154(9): 3188-3196.
- [16] Dabour N, Bando T, Nakamura T, et al. Cricket body size is altered by systemic RNAi against insulin signaling components and epidermal growth factor receptor[J]. Development, Growth & Differentiation,

2011, 53(7): 857-869.

- [17] van Kesteren R E, Gagatek J S, Hagendorf A, et al. Postsynaptic expression of an epidermal growth factor receptor regulates cholinergic synapse formation between identified molluscan neurons[J]. European Journal of Neuroscience, 2008, 27(8): 2043-2056.
- [18] Hall T A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT[J]. Nucleic Acids Symposium Series, 1999, 41: 95-98.
- [19] Shi Y Y, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci[J]. Cell Research, 2006, 16(10): 851.
- [20] Kalinowski S T, Taper M L, Marshall T C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment[J]. Molecular Ecology, 2007, 16(5): 1099-1106.
- [21] Coakes S J, Steed L. SPSS: Analysis without Anguish Using SPSS Version 14.0 for Windows[M]. New York: John Wiley & Sons, Inc., 2009.
- [22] Botstein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1980, 32(3): 314-331.
- [23] Bishayee S. Role of conformational alteration in the epidermal growth factor receptor (EGFR) function[J]. Biochemical Pharmacology, 2000, 60(8): 1217-1223.
- [24] Sun L L, Huan P, Wang H X, et al. An EGFR gene of the Pacific oyster Crassostrea gigas functions in wound

healing and promotes cell proliferation[J]. Molecular Biology Reports, 2014, 41(5): 2757-2765.

- [25] Vignal A, Milan D, SanCristobal M, et al. A review on SNP and other types of molecular markers and their use in animal genetics[J]. Genetics Selection Evolution, 2002, 34(3): 275-305.
- [26] Zhao Z M, Fu Y X, Hewett-Emmett D, et al. Investigating single nucleotide polymorphism (SNP) density in the human genome and its implications for molecular evolution[J]. Gene, 2003, 312: 207-213.
- [27] 桂建芳,朱作言.水产动物重要经济性状的分子基础 及其遗传改良[J].科学通报, 2012, 57(15): 1751-1760.
 Gui J F, Zhu Z Y. Molecular basis and genetic improvement of economically important traits in aquaculture animals[J]. Chinese Science Bulletin, 2012, 57(15): 1751-1760.
- [28] Brookes A J. The essence of SNPs[J]. Gene, 1999, 234(2): 177-186.
- [29] De-Santis C, Jerry D R. Candidate growth genes in finfish - Where should we be looking?[J]. Aquaculture, 2007, 272(1-4): 22-38.
- [30] Tao W J, Boulding E G. Associations between single nucleotide polymorphisms in candidate genes and growth rate in Arctic charr (*Salvelinus alpinus* L.)[J]. Heredity, 2003, 91(1): 60-69.
- [31] Drysdale C M, McGraw D W, Stack C B, et al. Complex promoter and coding region β₂-adrenergic receptor haplotypes alter receptor expression and predict *in vivo* responsiveness[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(19): 10483-10488.

Polymorphism of SNPs in *EGFR* intron 1 and its association with growth traits in *Sinonovacula constricta*

WEI Kanyun¹, XIE Shumei¹, WANG Shentong¹, CHEN Yukuan¹, NIU Donghong^{1,2*}, LI Jiale^{1,2,3}

(1. Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources,

Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;

2. Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding,

Shanghai Ocean University, Shanghai 201306, China;

3. Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China)

Abstract: In order to study the correlation between EGFR gene and growth traits (shell length, shell width, shell height and body weight), we analyzed the variation of EGFR intron 1 sequence from *Sinonovacula constricta* by using direct sequencing. There were 17 SNP sites in intron 1, named SNP1–SNP17 respectively. Based on Chi-square test, the 13 sites were fitted to Hardy-Weinberg equilibrium, and the 10 sites showed moderate polymorphism through polymorphism detection (0.25 < PIC < 0.5). The correlation between SNPs and growth traits (shell length, shell width, shell height, and body weight) were further analyzed using a General Linear Model and multiple comparisons, and the results showed that a total of 16 SNP sites were significantly associated with shell length, shell width, shell height and body weight. The results suggest that *EGFR* gene could be used as potential genetic marker for molecular breeding. The study also laid a foundation for further research on its growth function.

Key words: Sinonovacula constricta; EGFR; polymorphism; growth traits

Corresponding author: NIU Donghong. E-mail: dhniu@shou.edu.cn

2期

Funding projects: National Natural Science Foundation of China (31472278); National High Technology Research and Development Program of China (863 Program) (2012AA10A400); Shanghai Universities Knowledge Service Platform (ZF1206)