文章编号:1000-0615(2017)07-1044-10

DOI: 10.11964/jfc.20170210717

三角帆蚌HcTyr基因内壳色性状相关SNP筛选及图谱定位

韩学凯1. 陈夏君1, 白志毅1,2, 刘晓军1, 李家乐1,2*

(1. 上海海洋大学农业部淡水水产种质资源重点实验室,上海 201306;

2. 上海海洋大学上海市水产养殖工程技术研究中心, 上海 201306)

摘要:为研究三角帆蚌HcTyr基因与内壳色性状的相关性,本实验根据已分离的三角帆 蚌HcTyr基因进行引物设计和片段扩增,并用144只三角帆蚌对其多态性进行筛选和验 证、卡方检验分析了SNP位点和三角帆蚌内壳色相关性、并对HcTvr基因进行了图谱定 位。结果显示,在HcTyr基因上筛选出8个SNP位点,其中有7个SNP位点与三角帆蚌内壳 色L、a及dE呈显著相关性,用这7个SNP位点做单倍型构建和分析,发现Ⅱ、Ⅲ及Ⅳ这 3种单倍型在白色群体中出现的频率极显著高于在紫色群体中出现的频率, 而 V 和 Ⅲ 这 2两种单倍型在紫色群体中出现的频率极显著高于白色群体。进一步在商业养殖群体中 验证发现, Ⅳ和Ⅲ这2种单倍型可分别作为白色和紫色群体的优势单倍型。研究表明, 三角帆蚌HcTyr基因可作为内壳色相关的候选基因,其部分SNP位点可用于三角帆蚌分 子辅助育种。另外本实验还将HcTvr基因定位在三角帆蚌LG16连锁群上,这为进一步解 析该基因调控珍珠颜色形成的分子机制奠定了基础。

关键词:三角帆蚌; HcTyr; 内壳色; 相关性; 基因定位 中图分类号: O 785; S 968.3

三角帆蚌(Hyriopsis cumingii)隶属于软体动 物门(Mollusca),双壳纲(Bivalvia), 蚌目 (Unionida), 蚌科(Unionidae), 是我国最具经济价 值的特有淡水珍珠贝。据报道,世界上约95%的 淡水珍珠产自中国,而其中70%是由三角帆蚌生 产的[1]。然而,如今我国淡水珍珠面临着产量高 而产值却很低的问题,造成这种问题主要原因 是质量低的淡水珍珠比较多,其中颜色是影响 珍珠质量和价格的一个重要因素。研究表明贝 壳内壳色具有可遗传性[2-3],海水和淡水贝类育 珠中都曾发现,以不同内壳色外套膜小片插片 时,对形成珍珠颜色会有显著影响[4-6],因此可 以用内壳色为目标性状对珍珠贝进行选育。虽 然国内已开展对三角帆蚌内壳色进行传统选育 的相关工作^[3],但由于贝类许多性状是数量性 状,其表型可能受多基因控制且易受环境影 响,传统选育有效性受到限制。而借助现代分 文献标志码:A

子生物学和数量遗传学手段[7],筛选与内壳色相 关的分子标记开展三角帆蚌辅助选育工作,将 有可能大大提高育种效率。

酪氨酸酶(TYR)是广泛分布于动植物和微生 物中含铜离子的金属酶^[8]。研究发现, TYR在色 素沉积、创伤修复及先天性免疫过程中都起着 重要作用[9-11]。目前,酪氨酸酶在软体动物中也 多有发现,但研究内容主要涉及基因克隆和酶 活性分析等方面^[12-14]。在合浦珠母贝(Pinctada fucata)中,研究发现TYR不但能在外套膜中特异 性表达,而且还参与贝壳基质形成和黑色素的 沉积过程^[15],也有研究表明TYR在蓝色珍珠形成 过程中起到关键作用[16]。本实验室已克隆三角帆 蚌TYR的cDNA全长,并发现该基因参与了贝壳 角质层和珍珠质层的形成,并与珍珠层颜色形 成有关^[17]。本研究将三角帆蚌酪氨酸酶基因HcTvr 作为候选基因,采用直接测序法检测三角帆蚌

收稿日期: 2017-02-21 修回日期: 2017-03-27 资助项目:国家自然科学基金(31272657);国家科技支撑计划(2012BAD26B04) 通信作者: 李家乐, E-mail: jlli2009@126.com

的SNP突变位点,并与三角帆蚌内壳色相关性状进行关联分析,以期筛选与贝壳或珍珠颜色性状相关的分子标记,加快三角帆蚌紫色等彩色珍珠新品种选育进程。

1 材料与方法

1.1 实验对象

于2015年3月,在浙江金华伟民水产养殖基 地进行三角帆蚌紫色和白色群体苗种的人工繁 育工作,6月份将出池的小蚌运送至上海海洋大 学崇明养殖基地进行培养。于12月份从同池培养 的紫色和白色群体中分别随机选取72只三角帆 蚌,共144只用于内壳色性状的关联分析。取 144只三角帆蚌的斧足和外套膜于酒精中保存。

1.2 三角帆蚌基因组DNA的提取及数据测量

三角帆蚌基因组DNA的提取使用天根海洋 动物DNA提取试剂盒,分别用1.5%的琼脂糖凝 胶电泳和分光光度计检测基因组DNA的质量和 浓度,然后将样品置于-20°C冰箱中备用。

三角帆蚌内壳色的测量中使用Lovibond-RT200表面色度计,参照之前的方法^[18],采用国际照明委员会1976推荐的*L、a及b*,对每只蚌右 壳边缘的3个点进行测量,并取这3个位置颜色数 据的平均值作为该蚌内壳色数据。其中*L*代表明 度,*L*>0表示颜色偏白,*L*<0表示颜色偏黑; *a*>0表示颜色偏红,*a*<0表示颜色偏绿;*b*>0表示 颜色偏黄,*b*<0表示颜色偏蓝,颜色参数色差值 *dE*计算方法:

$dE = \sqrt{\Delta L^2 + \Delta a^2 + \Delta b^2}$

式中, $\Delta L = L_n - L_0$, $\Delta a = a_n - a_0$, $\Delta b = b_n - b_0 \circ L_n$ 、 a_n 、 b_n 分别为所测贝壳的颜色参数值, L_0 、 a_0 和 b_0 为标准白样品的颜色参数。 ΔL 、 Δa 、 Δb 、 AdE分别代表所测量3个点L、a、b及dE的平均值。

1.3 HcTyr基因SNP位点筛选

利用本实验室已分离的三角帆蚌*HcTyr*基因 (GenBank登录号:KX447816),通过与本实验已 有的部分三角帆蚌基因组序列进行对比,以区 分基因的内含子和外显子区域。然后利用Primer Premier 5软件在基因的外显子区域设计引物,最 终在*HcTyr*基因上设计得到3对引物(表1)。其中 P1引物扩增*HcTyr*基因编码区上60~480区段共421 bp序列长度,而P2和P3引物共扩增出*HcTyr*基因 编码区上611~1848区段共1238 bp序列长度, 3对引物扩增出的编码区序列长度为1659 bp, 共覆盖*HcTyr*基因编码区的83.41%,覆盖整个基 因cDNA全长的71.66%。

利用设计的*HcTyr*基因上3对引物,分别用 20个样品进行PCR扩增。PCR反应体系共20 μL: 10 μL 2 × Taq PCR Mastermix,模板DNA(50 ng/μL) 2 μL,上下游引物(10 μmol/L)各0.5 μL,ddH₂O为 7.0 μL。扩增程序:94 °C预变性3 min;94 °C 变性30 s,55 °C退火30 s,72 °C延伸45 s,共35个 循环;72 °C延伸7 min。扩增产物用1.0%的琼脂 糖凝胶电泳检测,将检测合格的样品送至上海 迈浦生物科技有限公司进行测序,用Vector NIT Suite 11.0对测序结果进行比对寻找SNP位点。然 后对存在SNP位点的引物用144只三角帆蚌个体 进行扩增验证。本研究所有试剂均购自天根生 化科技有限公司,引物合成由上海迈浦生物科 技有限公司完成。

1.4 数据分析

采用Popgene软件分析观测杂合度、期望杂 合度和多态性含量等遗传参数。利用JMP 8.0软

	Tubi Tine primero or s	si in nerji gene or ni euning.	-
引物 primers	序列(5'-3') sequence of primers	产物长度/bp products length	退火温度/°C annealing temperature
P1	TATAGAACGAATACACTTCCTCC	670	55
	CAGTCATCGTGGGATTATTCT		
P2	ACAACTCCCTGTCTTTGCCCT	750	55
	TCCCGCTTATAGTCCCTGTGC		
Р3	CCGACTGCGGATCTCTTTACC	653	55
	CAGACGAATGACACCAGAACA		

表 1 三角帆蚌*HcTyr*基因SNP分型引物信息 Tab. 1 The primers of SNP in *HcTyr* gene of *H. cumingii*

件的卡方检验来分析*HcTyr*基因片段的不同SNP 位点的基因型与三角帆蚌的内壳色性状之间的 相关性。用SHEsis软件进行连锁不平衡分析和单 倍型构建。

1.5 HcTyr基因SNP位点和单倍型在商业养殖 群体中的验证

为了对筛选出的SNP位点和所构建的优势单 倍型进行验证,从商业养殖群体中随机选取紫 色和白色三角帆蚌各48只,统计每个个体内壳色 性状并用上述引物进行SNP位点扩增,再进行内 壳色性状和SNP位点的相关性分析及单倍型构 建,通过分析验证所筛选出SNP位点和优势单倍 型在其他群体中的可用性。

1.6 HcTyr基因在三角帆蚌图谱上的定位

为了将*HcTyr*基因定位到三角帆蚌图谱上, 采用之前本实验室构建三角帆蚌微卫星图谱时 所用的94个F₁代个体和2个亲本作为实验材料。 在*HcTyr*基因上选取一对引物对2个亲本及子代共 96只三角帆蚌个体进行扩增,扩增产物进行测序 后寻找在该家系中存在的SNP位点。然后在扩增 片段上选取1个SNP位点,统计该位点在94只 F₁个体和2个亲本中的基因型,运用Joinmap 4.0软 件并参照Bai等^[18]的方法将*HcTyr*基因定位到三角 帆蚌微卫星遗传连锁图谱上。

2 结果与分析

2.1 HcTyr基因的序列扩增

根据在HcTyr基因上设计的3对引物,分别 用20个样品扩增相应的基因片段。对扩增片段进 行测序和比对后,在P1和P2两对引物扩增的基 因片段上分别发现3个和5个SNP位点。而在P3引 物扩增片段上没有发现SNP位点。由于所扩增的 基因片段均位于HcTyr基因的cDNA序列上,所以 SNP位点均以cDNA序列上该突变位点到起始密 码子ATG的碱基数来命名。

2.2 HcTyr基因多态性分析

使用144只三角帆蚌对*HcTyr*基因上筛选得 到的SNP位点进行扩增测序,测序结果用软件分 析,发现*HcTyr*基因上的8个SNP位点均为杂合型 突变,其中有2个发生错义突变,C+700T位点密 码子改变类型为CTT-TTT,分别编码亮氨酸和苯 丙氨酸。G+994A位点密码子改变类型为GTA- ATA, 分别编码缬氨酸和异亮氨酸。

对*HcTyr*基因上SNP位点分型结果用Popgene 处理后,*HcTyr*基因上的SNP位点的多态性遗传 参数见表2。根据0.25<*PIC*<0.5为中度多态, *PIC*<0.25为低度多态的原则,发现*HcTyr*上的8个 SNP位点中,除了A+771T为低度多态位点外,其 他7个SNP位点均为中度多态位点。

表 2 HcTyr基因8个SNP位点遗传参数

 Tab. 2
 The polymorphic parameters of 8 SNP sites in

 HcTyr gene of *H. cumingii*

位点	观测杂合度	期望杂合度	多态信息含量	有效等位基因数
site	H_O	H_e	PIC	N_e
A+168G	0.903	0.903	0.321	1.670
C+255T	0.632	0.507	0.371	1.966
C+456T	0.750	0.750	0.218	1.332
C+700T	0.813	0.642	0.293	1.555
A+771T	0.813	0.818	0.165	1.221
C+826T	0.813	0.642	0.293	1.555
C+831G	0.813	0.642	0.293	1.555
G+994A	0.819	0.638	0.296	1.564

2.3 HcTyr基因SNP位点与内壳色性状关联分析

将HcTyr基因上检测得到的SNP位点基因型与144只三角帆蚌的内壳色性状(L、a、b及dE)进行相关性分析。分析结果表明,在HcTyr基因上的8个SNP位点中,除C+255T位点不同基因型仅在内壳色性状L和dE参数上存在显著差异外(P<0.05),其余7个位点不同基因型均在L、a及dE上存在显著差异(P<0.05),而在b参数上,8个SNP位点不同基因型都没有显示出明显差异(表3)。

2.4 HcTyr基因SNP位点连锁不平衡及单倍型 分析

选择*HcTyr*基因上7个在*L、a*及*dE*性状上存 在显著差异的SNP位点,用SHEsis软件分析差异 位点的连锁不平衡性。结果显示*HcTyr*基因上的 7个差异显著位点中,A+168G、C+700T、 C+826T、C+831G、G+994A这5个位点之间存在 强连锁不平衡(*D*'>0.75,*R*²>0.33)。另外, A+771T位点与C+700T、C+826T、C+831G、 G+994A位点之间也存在强连锁不平衡(*D*'>0.75, *R*²>0.33)(表4)。用这7个位点单倍型构建后共获得 7种单倍型,其中Ⅱ、Ⅲ、Ⅳ这3种单倍型在白色

Tab. 3 Association analysis of 8 SNP sites with shell nacre colour in <i>HcTyr</i> gene of <i>H. cumingii</i>								
位点 locus	基因型 genotype	样本量 no.	AL	Aa	Ab	AdE		
A+168G	AA	33	55.91±0.97 ^A	1.36±0.45 ^A	-9.13±0.80 ^A	45.49±0.93 ^A		
	AG	14	56.62±1.48 ^A	0.88±0.69 ^A	-8.31±1.23 ^A	44.61±1.43 ^A		
	GG	97	52.97±0.56 ^B	3.53±0.26 ^B	-8.74 ± 0.47^{A}	48.78±0.54 ^B		
C+255T	CC	36	55.87±0.94 ^A	1.67±0.45 ^A	-9.37±0.76 ^A	45.63±0.91 ^A		
	СТ	53	52.89±0.77 ^{AB}	3.51 ± 0.37^{AB}	-8.64±0.63 ^A	48.80±0.75 ^B		
	TT	55	53.84±0.76 ^B	$2.80{\pm}0.37^{\rm B}$	-8.54±0.62 ^A	47.79 ± 0.74^{AB}		
C+456T	CC	105	55.07±0.53 ^A	2.03±0.25 ^A	-8.78±0.45 ^A	46.44±5.32 ^A		
	СТ	36	50.94±0.91 ^B	$4.74{\pm}0.42^{\rm B}$	-8.80±0.77 ^A	$50.94{\pm}5.07^{\rm B}$		
	TT	3	53.15±3.15 ^{AB}	5.47±1.45 ^{AB}	-8.75±2.66 ^A	49.28±4.37 ^{AB}		
C+700T	CC	97	52.97±0.56 ^A	3.53±0.26 ^A	-8.74±0.47 ^A	48.78±0.54 ^A		
	СТ	27	56.52±1.07 ^B	1.14±0.50 ^B	$-8.31 \pm 0.88^{\text{A}}$	44.80±1.03 ^B		
	TT	20	55.58±1.24 ^{AB}	1.33±0.58 ^B	-9.66±1.02 ^A	45.81±1.19 ^B		
A+771T	AA	116	53.42±0.52 ^A	3.16±0.25 ^A	-8.95±0.42 ^A	48.28±0.50 ^A		
	AT	27	56.53±1.08 ^B	1.14±0.52 ^B	$-8.31 \pm 0.88^{\text{A}}$	44.80±1.05 ^B		
	TT	1	52.96±5.61 ^{AB}	2.47 ± 2.69^{AB}	-2.72±4.56 ^A	47.26 ± 5.44^{AB}		
C+826T	TT	97	52.97±0.56 ^B	3.53±0.26 ^A	-8.74±0.47 ^A	48.78±0.54 ^A		
	СТ	27	56.53±1.07 ^A	1.14±0.50 ^B	-8.31±0.88 ^A	44.80±1.03 ^B		
	CC	20	55.58±1.24 ^{AB}	1.33±0.58 ^B	-9.66±1.02 ^A	45.81±1.19 ^B		
C+831G	CC	97	52.97±0.56 ^A	3.53±0.26 ^A	-8.74±0.47 ^A	48.78±0.54 ^A		
	CG	27	56.52±1.07 ^B	1.14±0.50 ^B	$-8.31 \pm 0.88^{\text{A}}$	44.80±1.03 ^B		
	GG	20	55.58±1.24 ^{AB}	1.33±0.58 ^B	-9.66±1.02 ^A	45.81±1.19 ^B		
G+994A	AA	21	55.60±1.21 ^{AB}	1.34±0.56 ^A	-9.20±1.00 ^A	45.75±1.17 ^A		
	AG	26	56.54±1.09 ^A	1.12±0.51 ^A	$-8.62 \pm 0.90^{\text{A}}$	44.81±1.05 ^A		
	GG	97	52.97±0.56 ^B	3.53±0.26 ^B	-8.74±0.47 ^A	48.78±0.54 ^B		

表 3 HcTyr基因8个SNP位点与内壳色性状关联分析

··· olour in H.T CO CNID

注:同一位点同列中不同大写字母表示差异显著(P<0.05),下同

Notes: different superscript letters in a column of the same two loci indicate significant difference at P<0.05, the same below

群体中出现的频率极显著高于在紫色群体中出 现的频率(P<0.01)。而V和WI2种单倍型在紫色 群体中出现的频率极显著高于在白色群体中出 现的频率(P<0.01)(表5)。

2.5 HcTyr基因7个显著SNP位点及优势单倍 型的验证

选取96只商业养殖三角帆蚌进行内壳色测 量,并用该群体扩增上述7个显著SNP位点后, 分析内壳色性状和SNP位点基因型的相关性。结 果表明,在7个SNP位点中,A+168G、C+700T和 G+994A 3个位点不同基因型在内壳色性状L、 a和dE参数上存在显著差异(P<0.05),另外4个位 点不同基因型在L、a、b及dE上均存在显著差异 (P<0.05)(表6)。

对这7个SNP位点进行连锁不平衡分析,发 现C+700T、A+771T、C+826T、C+831G、 G+994A这5个位点之间存在强连锁不平衡 (D'>0.75, R²>0.33)。另外, A+168G与C+700T、 G+994A位点之间也存在强连锁不平衡(D'>0.75, R²>0.33)(表7)。用这7个位点重新构建单倍型,发 现在商业养殖群体中出现4个显著差异的单倍

表 4	HcTvr基因7个SNP位点连锁不平衡分析	
1X T		

Tab. 4	Linkage	disequilibrium	analysis of 7 SN	P sites in	HcTyr gene of H. cumingi	i

	A+168G	C+456T	C+700T	A+771T	C+826T	C+831G	G+994A
A+168G		1.000	1.000	1.000	1.000	1.000	1.000
C+456T	0.066		1.000	1.000	1.000	1.000	1.000
C+700T	0.788	0.052		1.000	1.000	1.000	1.000
A+771T	0.291	0.019	0.369		1.000	1.000	1.000
C+826T	0.788	0.052	1.000	0.369		1.000	1.000
C+831G	0.788	0.052	1.000	0.369	1.000		1.000
G+994A	0.804	0.052	0.981	0.362	0.981	0.981	

注: 对角线上方为D', 对角线下方为R², 下同

Notes: the figures above diagonal represent D'_{7} the figures below the diagonal represent R^{2} , the same below

表 5 HcTyr基因7个SNP位点单倍型分析

单倍型 haplotype	单倍型序列 sequence	紫色群体(频率) purple strain (frequency)	白色群体(频率) white strain (frequency)	$\chi^2(P$ 值) χ^2 (<i>P</i> value)
Ι	ACCTTCA	0.00(0.000)	1.00(0.007)	
II	ACCTTCG	0.00(0.000)	12.00(0.083)	12.612(0.000**)
III	ACTACGA	0.00(0.000)	51.01(0.354)	62.479(0.000**)
IV	ACTTCGA	0.00(0.000)	15.99(0.111)	17.051(0.000**)
V	GCCATCG	102.00(0.708)	63.99(0.444)	20.016(0.000**)
VI	GCCTTCG	0.00(0.000)	0.01(0.000)	
VII	GTCATCG	42.00(0.292)	0.00(0.000)	48.855(0.000**)

注: **表示差异极显著(P<0.01),下同

Notes: ** indicates extremely significant difference at P<0.01, the same below

型,其中N、V和MI这3种单倍型也出现在之前 构建的单倍型中,而MI单倍型是新出现的单倍 型(表8)。分析表明,无论在商业养殖群体还是 非商业养殖群中,NP单倍型在白色群体中出现 的频率都极显著高于在紫色群体中出现的频率 (P<0.01),MI单倍型在紫色群体中出现的频率都 极显著高于在白色群体中出现的频率(P<0.01), N和MI在2次单倍型分析中结果一致。而对于 V单倍型,在用非商业养殖群体单倍型构建 时,它在紫色群体中出现的频率极显著高于在 白色群体中出现的频率(P<0.01),在用商业养殖 群体构建的单倍型时,V单倍型在白色群体中 出现的频率却极显著高于在紫色群体中出现的频率(P<0.01)。

2.6 HcTyr基因在三角帆蚌微卫星遗传图谱上 定位

为了研究HcTyr基因在三角帆蚌遗传图谱上

http://www.scxuebao.cn

的位置,选取2个亲本及94个F₁子代为作图群体,用P1引物来扩增*HcTyr*基因上的部分片段。 经序列比对后发现P1引物扩增的*HcTyr*部分片段 在作图家系中存在C+255T和C+456T 2个SNP位 点,选择C+456T位点来进行*HcTyr*基因的定位, 最后*HcTyr*基因被定位在之前构建三角帆蚌微卫 星图谱的LG16连锁群上。C+456T位于LG16连锁 群的77.7 cM位置,其两侧的临近标记分别为 151CF和958CF(图1)。

3 讨论

壳色作为贝类一个重要的可遗传性状,属 于多基因控制的数量性状,虽然近年来针对贝 类壳色选育工作已得到开展,但由于传统选育 的局限性,选育进程往往较慢。而分子标记辅 助育种作为新兴的选育方法,可以在分子水平 上进行选育并大幅度提高育种效率,已受到越

Tab. 6	Association analysis of	f 7 SNP sites wit	h shell nacre colo	ur in <i>HcTyr</i> gene f	or commercial cultu	red populations
位点 locus	基因型 genotype	样本量 no.	AL	Aa	Ab	AdE
A+168G	AA	9	55.10±2.06 ^{AB}	1.99±0.92 ^A	-9.54±2.30 ^{AB}	47.38±1.86 ^{AB}
	AG	15	58.78±1.59 ^A	0.71±0.72 ^A	-13.78±1.78 ^A	44.14±1.44 ^A
	GG	72	52.66±0.73 ^B	4.14±0.33 ^B	-9.58±0.81 ^B	50.19±0.66 ^B
C+456T	CC	62	51.92±0.76 ^A	4.41±0.35 ^A	-8.62 ± 0.85^{B}	50.70±0.70 ^A
	СТ	21	56.42±1.31 ^B	1.83±0.60 ^B	-13.66±1.47 ^B	46.83±1.20 ^B
	TT	13	58.84±1.66 ^B	1.16±0.76 ^в	-12.36 ± 1.86^{AB}	44.29±1.52 ^B
C+700T	CC	77	52.97±0.72 ^A	3.94±0.33 ^A	-9.77±0.80 ^A	49.85±0.66 ^A
	СТ	18	57.34±1.49 ^B	1.19±0.68 ^B	-11.72±1.65 ^A	45.38±1.36 ^B
	TT	1	57.72±6.33 ^{AB}	2.14±2.87 ^{AB}	-18.89±6.98 ^A	46.87±5.75 ^{AB}
A+771T	AA	74	52.63±0.72 ^A	4.12±0.32 ^A	-9.65±0.79 ^A	50.20±0.65 ^A
	AT	19	57.51±1.41 ^B	0.91±0.64 ^B	-10.94±0.57 ^A	44.95±1.28 ^B
	TT	3	60.50±3.56 ^B	1.55±1.60 ^{AB}	$-20.04{\pm}3.94^{\rm B}$	44.67±3.22 ^{AB}
C+826T	TT	76	52.65±0.71 ^A	4.04±0.32 ^A	-9.38±0.77 ^A	50.14±0.64 ^A
	СТ	17	55.78±1.50 ^B	0.83±0.68 ^B	-12.35±1.62 ^{AB}	46.74±1.35 ^B
	CC	3	60.50±3.57 ^B	1.55±1.62 ^{AB}	-20.04 ± 3.86^{B}	44.67±3.21 ^{AB}
C+831G	CC	76	52.65±0.71 ^A	4.04±0.32 ^A	-9.38±0.77 ^A	50.14±0.64 ^A
	CG	17	55.78±1.50 ^B	0.83±0.68 ^B	-12.35±1.62 ^{AB}	46.74±1.35 ^B
	GG	3	60.50 ± 3.57^{B}	1.55±1.62 ^{AB}	-20.04 ± 3.86^{B}	44.67±3.21 ^{AB}
G+994A	GG	75	52.92±0.73 ^A	3.97±0.33 ^A	-9.74±0.81 ^A	49.93±0.66 ^A
	AG	20	57.12±1.42 ^B	1.34±0.64 ^B	-11.63±1.56 ^A	45.53±1.28 ^B

表 6 商业养殖群体中HcTyr基因7个SNP位点与内壳色性状关联分析

. • .• alugia of 7 SND sites with shall passe colour in HaTe rono fo monoial aultur a. Jati

表 7 HcTyr基因7个SNP位点在商业养殖群体中连锁不平衡分析

 $2.14{\pm}2.88^{\text{AB}}$

 $-18.89 \pm 6.98^{\text{A}}$

57.72±0.73^{AB}

1

AA

Tab. 7	Linkage disec	quilibrium analy	sis of 7 SNP site	es in <i>HcTyr</i> gen	e for commercia	l cultured popu	lations
	A+168G	C+456T	C+700T	A+771T	C+826T	C+831G	G+994A
A+168G		0.603	1.000	0.749	0.728	0.724	1.000
C+456T	0.022		0.999	1.000	1.000	1.000	0.999
C+700T	0.560	0.035		0.881	0.752	0.765	0.885
A+771T	0.405	0.044	0.603		0.846	0.847	0.784
C+826T	0.343	0.039	0.489	0.629		1.000	0.785
C+831G	0.344	0.040	0.500	0.652	0.971		0.788
G+994A	0.624	0.038	0.703	0.531	0.584	0.591	

 46.87 ± 5.74^{AB}

表 8 HcTyr基因7个SNP位点在商业养殖群体中单倍型分析

0	Hanlatuna	molycic of 7	CND aitaa in	HaTwaana	for commonded	aulturad	nonulation
. 0	паріотуре з	inaivsis of 7	SINE SILES III	<i>HCIVI</i> yene	for commercial	cultureu	DODUIALION

单倍型	单倍型序列	紫色群体(频率)	白色群体(频率)	χ ² (<i>P</i> 值)					
haplotype	sequence	purple strain (frequency)	white strain (frequency)	χ^2 (<i>P</i> value)					
IV	ACTTCGA	0.06(0.083)	11.46(0.119)	11.956(0.000**)					
V	GCCATCG	49.00(0.510)	63.94(0.666)	8.571(0.003**)					
VII	GTCATCG	41.00(0.427)	0.00(0.000)	50.227(0.000**)					
VIII	ACCATCG	0.31(0.003)	5.90(0.061)	4.892(0.027*)					

注: *表示差异显著(P<0.05)

Notes: * indicates significant difference at P<0.05

Tab.

图 1 HcTyr基因在LG16连锁群上定位情况

Fig. 1 Location of HcTyr gene on LG16 of H. cumingii

来越广泛的关注[19]。

酪氨酸酶作为生物体内黑色素重要的限速 酶,在黑色素的形成和沉积过程中起重要作 用^[20]。由于黑色素分类不同,不同种类的黑色素 的沉积可参与生物体不同体色的形成^[21]。本实验 根据已知的三角帆蚌*HcTyr*基因的cDNA序列设计 引物,经引物扩增、序列对比后,在*HcTyr*基因 cDNA序列上发现8个SNP位点。这显著高于之前 研究的1SNP/1000水平^[22],说明在*HcTyr*基因中单 核苷酸多态性较高。另外多态性分析发现在 HcTyr基因中,有7个位点表现出中度多态性, A+771T位点表现出低度多态性。在该基因上没 有发现高度多态位点,这是由于SNP标记是典型 的两等位基因标记,因此很难像SSR标记一样表 现出较高多态性^[23]。

在测量的内壳色参数中,L代表亮度, a>0代表颜色偏红, 而色差值 dE大小可以反映色 彩丰富度。本研究在用144只三角帆蚌个体检测 HcTyr基因上的8个SNP位点发现,有7个位点不 同基因型均在L、a及dE上存在显著差异(P<0.05)。 这说明HcTvr基因对三角帆蚌内壳色形成有重要 影响,尤其是影响内壳色的亮度、红色度及色 彩丰富度。由于贝壳与珍珠在形成机制上具有 相似性,长期以来珍珠颜色与珍珠贝的内壳色 之间也一直被认为存在密切联系。李清清等修在 研究供片蚌与珍珠颜色相关性时,发现供片蚌 内壳色dE越大紫色珍珠产出率越高, dE越小则 白色珍珠产出率越高。通过对HcTyr基因上不同 位点基因型进行个体选育,不但可以改良三角 帆蚌内壳色性状,而且将有可能推进三角帆蚌 不同颜色珍珠品种的选育。在HcTvr基因上的8个 SNP位点中,C+700T和G+994A 2个位点发生了错 义突变,而且这2个位点均位于该基因的编码区 内并与L、a及dE显著相关,这有可能是错义突 变导致编码氨基酸的改变,从而影响酪氨酸酶 功能活性的变化,进而对壳色的形成产生影响^[24]。

Bai等^[25]曾构建了三角帆蚌高密度图谱并对 内壳色性状进行QTL定位,发现控制三角帆蚌内 壳色形成的主效基因可能位于LG17连锁群上。 为了进一步确定*HcTyr*基因是否存在于之前报道 的壳色相关LG17连锁群上,实验在*HcTyr*基因上 选取SNP位点来将其进行图谱定位,并最终将其 定位在三角帆蚌微卫星遗传图谱的LG16连锁群 77.7 cM位置。虽然*HcTyr*基因没有定位在之前报 道的LG17连锁群上,但是由于目前关于控制三 角帆蚌内壳色形成的主效基因仍未发现,而且 壳色形成的机理也不清楚,因此要确定*HcTyr*基 因是否为控制内壳色关键基因,还需要进行后 续的功能性实验才能验证。

在用传统方法分析单个SNP位点与性状关 系时,往往会出现位点信息模糊和不完整等问 题^[26-28],而单倍型的构建和分析则可以有效解决 这些问题。李西雷等^[29]从三角帆蚌GPX基因中筛 选得到16个SNP位点,并通过构建单倍型分析显 示, GPX基因特定的单倍型在抗性群体和易感群 体中存在显著差异。本研究在HcTvr基因上挑选 与L、a及dE均存在显著差异的SNP位点,并进一 步做了单倍型的构建和分析。在HcTyr基因构建 的7种单倍型中, 白色群体中出现了Ⅱ、Ⅲ、Ⅳ 3个主要优势单倍型,紫色群体中出现了V和W 2种主要优势单倍型。进一步用商业养殖群体对 筛选出的SNP位点和所构建的优势单倍型进行验 证,发现在商业养殖群体中,这7个SNP位点不 同基因型同样与内壳色性状不同参数之间存在 显著性差异。单倍型验证发现,在商业养殖群 体中也存在Ⅳ、Ⅴ和Ⅲ3种单倍型,并且Ⅳ单倍 型在白色群体中出现的频率极显著高于在紫色 群体中出现的频率, Ⅲ单倍型在紫色群体中出 现的频率极显著高于在白色群体中出现的频 率,这与之前结果一致。而在商业养殖群体中 的V单倍型,其在紫色群体中出现的频率极显 著高于在白色群体中出现的频率,这与之前在 非商业养殖群体中观察到的结果不一致。考虑 到V单倍型在紫色和白色群体中都有较高频率 出现,因此V单倍型并不适用于对紫色和白色 群体进行区分和选育。而在2次不同群体的单倍 型构建中,Ⅳ单倍型几乎只在白色群体中出 现, Ш单倍型也只在紫色群体中出现, 尤其是 Ⅲ单倍型在紫色群体中出现概率极大,因此 Ⅳ和Ⅲ单倍型可分别作为白色群体和紫色群体 的优势单倍型。在今后三角帆蚌内壳色选育过 程中,可以针对目标性状来选择具有优势基因 型的个体,从而达到加快育种的目的^[30]。

参考文献:

- [1] Li J L, Li Y S. Aquaculture in China-Freshwater pearl culture[J]. World Aquaculture, 2009, 40(1): 60.
- [2] Jerry D R, Kvingedal R, Lind C E, et al. Donor-oyster

derived heritability estimates and the effect of genotype × environment interaction on the production of pearl quality traits in the silver-lip pearl oyster, *Pinctada maxima*[J]. Aquaculture, 2012, 338-341: 66-71.

 [3] 王照旗,韩学凯,白志毅,等.三角帆蚌紫色选育系1龄 阶段内壳色及生长性状的遗传参数估计[J].水产学报, 2014,38(5):644-650.

Wang Z Q, Han X K, Bai Z Y, *et al.* Estimates of genetic parameters for inner shell color and growth straits during one year old stage in the purple strain of *Hyriopsis cumingii* using microsatellite based parentage assignment[J]. Journal of Fisheries of China, 2014, 38(5): 644-650(in Chinese).

- [4] Wada K T, Komaru A. Color and weight of pearls produced by grafting the mantle tissue from a selected population for white shell color of the Japanese pearl oyster *Pinctada fucata martensii* (Dunker)[J]. Aquaculture, 1996, 142(1-2): 25-32.
- [5] Gu Z F, Huang F S, Wang H, et al. Contribution of donor and host oysters to the cultured pearl colour in *Pinctada martensii*[J]. Aquaculture Research, 2014, 45(7): 1126-1132.
- [6] 李清清, 白志毅, 刘晓军, 等. 三角帆蚌生长性状和内 壳色与所产无核珍珠质量的相关性分析[J]. 水产学报, 2015, 39(11): 1631-1639.
 Li Q Q, Bai Z Y, Liu X J, *et al.* Correlation analysis of non-nucleated pearl quality parameters with growth traits and inner shell color of *Hyriopsis cumingii*[J]. Journal of Fisheries of China, 2015, 39(11): 1631-1639(in Chinese).
- [7] 桂建芳,朱作言.水产动物重要经济性状的分子基础 及其遗传改良[J].科学通报,2012,57(19):1719-1729.
 Gui J F, Zhu Z Y. Molecular basis and genetic improvement of economically important traits in aquaculture animals[J]. Chinese Science Bulletin, 2012, 57(19):1719-1729(in Chinese).
- [8] Sánchez-Ferrer Á, Rodríguez-López J N, García-Cánovas F, *et al.* Tyrosinase: a comprehensive review of its mechanism[J]. Biochimica et Biophysica Acta (BBA)
 Protein Structure and Molecular Enzymology, 1995, 1247(1): 1-11.
- [9] Cerenius L, Lee B L, Söderhäll K. The proPO-system: pros and cons for its role in invertebrate immunity[J]. Trends in Immunology, 2008, 29(6): 263-271.
- [10] Andersen S O. Insect cuticular sclerotization: a

review[J]. Insect Biochemistry and Molecular Biology, 2010, 40(3): 166-178.

- Cieslak M, Reissmann M, Hofreiter M, *et al.* Colours of domestication[J]. Biological Reviews, 2011, 86(4): 885-899.
- [12] Nagai K, Yano M, Morimoto K, et al. Tyrosinase localization in mollusc shells[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2007, 146(2): 207-214.
- [13] Jiang J W, Xing J, Sheng X Z, et al. Characterization of phenoloxidase from the bay scallop Argopecten irradians[J]. Journal of Shellfish Research, 2011, 30(2): 273-277.
- [14] Zhang C, Xie L P, Huang J, et al. A novel putative tyrosinase involved in periostracum formation from the pearl oyster (*Pinctada fucata*)[J]. Biochemical and Biophysical Research Communications, 2006, 342(2): 632-639.
- [15] Takgi R, Miyashita T. A cDNA cloning of a novel alphaclass tyrosinase of *Pinctada fucata*: its expression analysis and characterization of the expressed protein[J]. Enzyme Research, 2014, 2014: 780549.
- [16] Miyashita T, Takagi R. Tyrosinase causes the blue shade of an abnormal pearl[J]. Journal of Molluscan Studies, 2011, 77(3): 312-314.
- [17] Chen X J, Liu X J, Bai Z Y, et al. HcTyr and HcTyp-1 of Hyriopsis cumingii, novel tyrosinase and tyrosinaserelated protein genes involved in nacre color formation[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2017, 204: 1-8.
- [18] Bai Z Y, Han X K, Luo M, et al. Constructing a microsatellite-based linkage map and identifying QTL for pearl quality traits in triangle pearl mussel (*Hyriopsis* cumingii)[J]. Aquaculture, 2015, 437: 102-110.
- [19] 孙效文, 鲁翠云, 贾智英, 等. 水产动物分子育种研究 进展[J]. 中国水产科学, 2009, 16(6): 981-990.
 Sun X W, Lu C Y, Jia Z Y, *et al.* The progress of molecular marker-based breeding for aquatic species[J].
 Journal of Fishery Sciences of China, 2009, 16(6): 981-990(in Chinese).
- [20] Sugumaran M. Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and

melanin in insects[J]. Pigment Cell Research, 2002, 15(1): 2-9.

- [21] Hearing V J, Tsukamoto K. Enzymatic control of pigmentation in mammals[J]. The FASEB Journal, 1991, 5(14): 2902-2909.
- [22] Vignal A, Milan D, SanCristobal M, et al. A review on SNP and other types of molecular markers and their use in animal genetics[J]. Genetics Selection Evolution, 2002, 34(3): 275-305.
- [23] Hubert S, Bussey J T, Higgins B, *et al.* Development of single nucleotide polymorphism markers for Atlantic cod (*Gadus morhua*) using expressed sequences[J]. Aquaculture, 2009, 296(1-2): 7-14.
- [24] Parichy D M. Evolution of danio pigment pattern development[J]. Heredity, 2006, 97(3): 200-210.
- [25] Bai Z Y, Han X K, Liu X J, et al. Construction of a highdensity genetic map and QTL mapping for pearl qualityrelated traits in *Hyriopsis cumingii*[J]. Scientific Reports, 2016, 6: 32608.
- [26] Daly M J, Rioux J D, Schaffner S F, *et al.* High-resolution haplotype structure in the human genome[J]. Nature Genetics, 2001, 29(2): 229-232.
- [27] Bader J S. The relative power of SNP and haplotype as genetic markers for association tests[J]. Pharmacogenomics, 2001, 2(1): 11-24.
- [28] Clark A G. The role of haplotypes in candidate gene studies[J]. Genetic Epidemiology, 2004, 27(4): 321-333.
- [29] 李西雷, 汪桂玲, 李家乐. 三角帆蚌*GPX*基因结构特征 及抗性相关SNP的筛选[J]. 遗传, 2012, 34(11): 1456-1464.
 - Li X L, Wang G L, Li J L. Identification of genomic structure and resistance trait associated SNP loci in glutathione peroxidase gene of *Hyriopsis cumingii*[J].
 Hereditas (Beijing), 2012, 34(11): 1456-1464(in Chinese).
- [30] 刘福平, 白俊杰. 单核苷酸多态性及其在水产动物遗传 育种中的应用[J]. 中国水产科学, 2008, 15(4): 704-712.
 Liu F P, Bai J J. Single nucleotide polymorphisms and its application in genetic breeding of aquatic animals[J].
 Journal of Fishery Sciences of China, 2008, 15(4): 704-712(in Chinese).

Detection of shell nacre colour-related SNP and gene mapping of *HcTyr* gene in *Hyriopsis cumingii*

HAN Xuekai¹, CHEN Xiajun¹, BAI Zhiyi^{1,2}, LIU Xiaojun¹, LI Jiale^{1,2*}

(1. Key laboratory of Freshwater Fisheries Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China;

2. Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China)

Abstract: In order to study the correlation between HcTyr gene and shell nacre colour, genomic sequence fragments were amplified according to cDNA fragments of HcTyr gene. Regarding the detected SNP, the genotype and the polymorphic information (*PIC*) of 144 *Hyriopsis cumingii* were analyzed, and the correlation between SNP and shell nacre colour-related traits were further analyzed using Chi-square test. Moreover, the location of HcTyr gene on gene map was also studied. The results showed that 7 of the 8 detected SNP in HcTyr gene were significantly associated with shell nacre colour (*L*, *a* and *dE*). Haplotype analysis revealed that the frequency of three major predominant haplotypes (II, III, IV) in the white strain was significantly higher than that in the purple strain. And the other two major predominant haplotypes (V and VI) showed significantly higher frequency in the purple strain. The haplotypes were further validated in commercial cultured populations and the results showed that W and VI can be considered as predominant haplotypes for white strain and purple strain respectively. The results suggest that HcTyr could be candidate shell nacre colour related genes for *H. cumingii*, and some polymorphic loci in this gene could be potential genetic markers for molecular breeding. Furthermore, we mapped HcTyr gene on LG16 of the previous linkage map, which will lay the foundation for the further study of the molecular mechanisms about this gene.

Key words: Hyriopsis cumingii; HcTyr; shell nacre colour; correlation; gene mapping

Corresponding author: LI Jiale. E-mail: jlli2009@126.com

Funding projects: National Natural Science Fundation of China (31272657); National Science and Technology Support Program (2012BAD26B04)