文章编号:1000-0615(2017)05-0669-09

DOI: 10.11964/jfc.20160610446

马氏珠母贝磺基转移酶基因的克隆及功能

王庆恒^{1,2}, 郝瑞娟^{1,2}, 郑 哲^{1,2}, 邓岳文^{1,2}, 杜晓东^{1,2*}

(1. 广东海洋大学水产学院, 广东 湛江 524088;

2. 广东省珍珠养殖与加工工程技术研究中心, 广东 湛江 524088)

摘要:硫酸角质素具有丰富的携带大量负电荷的磺酸基团,参与生物矿化的成核过程。 磺基转移酶催化磺酸基团的转移,对硫酸角质素的生物合成起决定性作用。本研究利用 RACE技术克隆马氏珠母贝磺基转移酶PmCHST1a全长,并通过RNA干扰技术检测 PmCHST1a对硫酸角质素合成及贝壳珍珠层形成的影响。结果显示,PmCHST1a基因全长 1385 bp,编码366个氨基酸;含有磺基转移酶结构域,具有跨膜结构和信号肽,定位于 高尔基体上。组织差异表达分析发现,PmCHST1a在中央膜显著高表达。注射Pm-CHST1a的RNAi探针后,PmCHST1a在中央膜的表达量显著下调,并且外套膜外液中硫酸 角质素的浓度显著降低;SEM检测发现珍珠层结构紊乱。综上所述,PmCHST1a可能通 过影响外套膜外液中硫酸角质素的合成,参与珍珠层的形成。本研究为进一步探讨磺基 转移酶及其参与合成的糖胺聚糖硫酸角质素在马氏珠母贝生物矿化中的作用提供依据。 关键词:马氏珠母贝;磺基转移酶;硫酸角质素;RNAi

中图分类号:Q785; S968.3

文献标志码:A

硫酸角质素是生物体内广泛存在的一种糖 胺聚糖,与蛋白质共价结合形成硫酸角质素蛋 白聚糖(KSPG),不仅参与抗炎、抗过敏等免疫 调节过程^[1],还参与生物矿化过程^[24]。已有研究 发现,兔子和牛的骨骼基质蛋白中存在硫酸角 质素蛋白聚糖;硫酸角质素也参与小鼠牙齿的 有机基质的形成^[2,5-6]。Carrino等^[3]报道了鸟类蛋 壳中的硫酸角质素通过富集Ca²⁺,进而参与蛋壳的 生物矿化。Fernandez等^[4]在红鲍(*Haliotis rufescens*) 的贝壳珍珠层有机质中定位了硫酸角质素。可 见硫酸角质素在脊椎动物和无脊椎动物的生物 矿化方面均发挥了重要作用。

磺基转移酶(sulfotransferase)催化磺酸基团从 磺酸基供体3'-磷酸腺苷-5'-磷酸硫酸酯(PAPS)转 移到特定底物上,实现底物的磺酸化^[7-8],具有 严格底物特异性^[9],是糖胺聚糖合成的关键酶。 磺基转移酶*CHST*1 [carbohydrate (keratan sulfate Gal-6) sulfotransferase 1] 参与硫酸角质素重复二 糖单位6位碳的磺酸化反应, 是硫酸角质素合成 的关键酶^[10]。

马氏珠母贝(Pinctada martensii)是我国重要的海水育珠贝。近年来,由于养殖环境恶化,马 氏珠母贝的珍珠产量和质量明显下降。因此, 研究生物矿化机制对于马氏珠母贝的养殖及珍 珠培育至关重要。目前,科研工作者已经克隆、 分析了一些马氏珠母贝矿化相关基因的序列特 征和组织表达,进而探讨其生物矿化功能^[11-13], 但硫酸角质素及其关联基因在马氏珠母贝体内矿 化功能的研究还鲜有报道。本研究利用RACE 技术和RNAi技术研究磺基转移酶基因PmCHST1a [Pinctada martensii carbohydrate (keratan sulfate Gal-6) sulfotransferase 1a]对贝壳珍珠质形成以及硫酸 角质素合成的影响,探讨PmCHST1a在生物矿化 过程中的功能,为马氏珠母贝生物矿化的研究 提供实验依据。

资助项目:国家自然科学基金(31372526, 31272635);广东海洋大学创新强校工程(GDOU2014050207) 通信作者:杜晓东,E-mail: gdoudxd@hotmail.com

收稿日期: 2016-06-15 修回日期: 2016-09-22

1 材料与方法

1.1 实验材料

马氏珠母贝取自广东徐闻大井村海区的健康个体,壳长为(54.66±5.72) mm。

1.2 实验方法

PmCHST1a的克隆及序列分析 PmCHST1a 中间片段、5'端和3'端的获得方法参照罗少杰等^[14], 所用引物见表1。将获得的序列通过DNAMAN 软件进行拼接获得序列全长。ORF Finder在线预 测基因开放式阅读框(ORF)和氨基酸序列; DNAMAN 软件和Primer Premier 5.0软件对预测的氨基酸序 列进行验证; NCBI在线比对,鉴定基因所属的 蛋白家族; ProtParam在线分析氨基酸序列的理 化性质; SMART软件预测目的蛋白结构域; TMHMM Server v. 2.0软件在线预测序列的跨膜结构域; ClusterW2对基因进行同源性比对; SOPMA预测 蛋白质二级结构; SWISS-MODEL在线预测蛋白 质三级结构。

组织差异表达分析

贝,闭壳肌抽血获得血细胞,剪取外套膜中央 区(简称中央膜)、外套膜边缘区(简称边缘膜)、 闭壳肌、足、肝胰腺、性腺和鳃。液氮保存备 用。参照Trizol说明书提取RNA;反转录获得cDNA 第一链,该步骤按照M-MLV试剂盒说明书(TaKaRa 公司)进行,具体方法参照焦钰等^[15]。

RNAi实验设计 参照Yan等^[11]的方法进行 PmCHST1a的RNAi实验,引物序列见表1。RNAi 实验中设置1个实验组(注射dsRNA-PmCHST1a), 2个对照组即空白对照组(注射DEPC水)和阴性对 照组(注射dsRNA-RFP),以闭壳肌注射的方式进 行。每组注射10只贝,每隔3 d注射1次,每次注 射剂量为100 μL,dsRNA浓度为1000 ng/μL,共 注射2次。第2次注射4 d后剪取中央膜用于测定 基因表达量;抽取外套膜外液用于检测硫酸角 质素浓度;贝壳洗净后阴干,用于观察贝壳内 表面新生珍珠层的超微结构。

RNAi *PmCHST*1a表达量的测定 利用实时 荧光定量PCR检测*PmCHST*1a在马氏珠母贝中央 膜中的表达量。

RNAi后外套膜外液中硫酸角质素浓度的测定

表1 本实验所用引物

随机取10只马氏珠母

Tab. 1Primers used in the study				
引物 primer	引物序列(5'→3') primer sequence	用途 usage		
PmCHST1a-5'outer	GCAATGCTTGAACGGCAGTGTTGTTC	5'RACE		
PmCHST1a-5'inner	CGGCAGTTTTGAAATCTGGCAGGTGAA	5'RACE		
PmCHST1a-3'outer	CACATGATCCGTGATCCGAGAGCAA	3'RACE		
PmCHST1a-3'inner	TGAGAGCAACCCGCTTTTATTTAGCAGAA	3'RACE		
PmCHST1a-S	ACAATCATCCAGCACCAATC	中间片段		
PmCHST1a-A	AATTTTTTAGCATCACAGGACTT	中间片段		
<i>M13-</i> S	CGCCAGGGTTTTCCCAGTCACGAC	菌落 PCR		
<i>M13-</i> A	AGCGGATAACAATTTCACACAGGA	菌落 PCR		
GAPDH-S	GCAGATGGTGCCGAGTATGT	荧光定量(内参)		
GAPDH-A	CGTTGATTATCTTGGCGAGTG	荧光定量(内参)		
PmCHST1a-qPCR-S	AGACAATCATCCAGCACCAATC	荧光定量		
PmCHST1a-qPCR-A	TTCATCAAATGTTCCACCAATG	荧光定量		
RNAi-RFP-S	<u>GCGTAATACGACTCACTATAGGG</u> CTGTCCCCCAGTTCCAGTAC	RNAi		
RNAi-RFP-A	<u>GCGTAATACGACTCACTATAGGG</u> CGTTGTGGGAGGTGATGTCCAGCT	RNAi		
RNAi-PmCHST1a-S	<u>GCGTAATACGACTCACTATAGGG</u> ATCCAGCACCAATCTTGATTCTATC	RNAi		
RNAi-PmCHST1a-A	GCGTAATACGACTCACTATAGGGTCTGATACAGCATCCGCAGTATTAT	RNAi		

注:表中下划线代表T7启动子序列

Notes: the sequences underlined represent the T7 promoter sequence

以Chondroitin sulfate A为标准品,浓度分别 设置为60、80、100、150和200 mg/mL。显色液 为阿利新蓝染液,110 mg阿利新蓝8GX溶于15% 磷酸-2% 硫酸溶液中,并定容至100 mL。显色 液工作配比为1:50。样品10 μL,显色液190 μL, 反应3~5 min。吸收波长设置为490 nm。使用酶 标仪检测RNAi后贝体外套膜外液中硫酸角质素 浓度。

RNAi后贝壳内表面新生珍珠层超微结构观察 用切割机将贝壳珍珠层与棱柱层交界的部分 切成1 cm×1 cm的小块,洗净、阴干。离子溅射

切成1 cm×1 cm的小块, 洗净、两干。离子溅射 仪溅射180 s后, JSM-6300 LV高低真空扫描电子 显微镜观察贝壳内表面晶体形貌。

1.3 数据处理

采用2^{-△△C1}法对实时荧光定量数据进行处理,利用SPSS 19.0软件对基因表达量和硫酸角质素浓度的均值进行显著性分析(*P*<0.05)。

2 结果与分析

2.1 PmCHST1a的克隆与功能分析

*PmCHST1a*基因序列分析 利用RACE技术,获得*PmCHST1a* cDNA全长序列。该序列全长1385 bp,其中5'UTR为88 bp,3'UTR为196 bp,包含26 bp ployA;其开放式阅读框(ORF)长度为1101 bp,编码366个氨基酸(图1)。通过SMART软件分析得出,*PmCHST1a*序列含有磺基转移酶结构域(sulfotransfer_3 domain)(图2),并具有信号肽区域。利用TMHMM Server v.2.0预测跨膜结构域,结果显示*PmCHST1a*有1个跨膜螺旋区,其位置在7~19(图3),属于跨膜蛋白。

*PmCHST1a*蛋白质理化性质分析 利用 ProtParam预测得出*PmCHST1a*理论分子量为 42 465.3 u;等电点为9.52;其中含量较高的氨基 酸为Leu(9.8%)、Ser(9.0%)、Lys(7.4%)、Val(7.4%)。 负电荷残基34个,正电荷残基52个;分析结果显 示其脂溶指数(aliphatic index)为84.62;总平均亲 水性(grand average of hydropathy, GRAVY)为 -0.203,属于亲水性蛋白。使用SOPMA软件对 *PmCHST1a*的二级结构进行预测,发现a螺旋结 构占整体的33.33%,β转角结构占10.38%,延伸 链占21.58%,无规则折叠占34.70%。

*PmCHST1a*同源性分析及三级结构预测 利用ClustalW2软件,将长牡蛎(*Crassostrea gigas*, EKC35714.1)、鸭嘴海豆芽(*Lingula anatina*, XP_ 013421993.1)、加利福尼亚海兔(*Aplysia califor-nica*, XP_005099075.1)、光滑双脐螺(*Biomphalaria glabrata*, XP_013087691.1)、美洲鲎(*Limulus polyphemus*, XP_013774249.1)的*CHST*1氨基酸序列同*PmCHST*1a序列进行同源比对,发现*PmCHST*1a与其他物种的*CHST*1同源性较低(图4),其中,*PmCHST*1a与长牡蛎(*CgCHST*1)氨基酸的序列相似度最高,为31%。采用Swiss-Model对*Pm-CHST*1a进行三维结构预测,并与长牡蛎(*CgCHST*1)进行比较分析(图5)。发现*PmCHST*1a与*CgCHST*1的相似性不高,说明*CHST*1在三维结构上的保守性较低。

2.2 PmCHST1a组织表达差异分析

*PmCHST*1a在中央膜和鳃中的相对表达量显 著高于闭壳肌和性腺(P<0.05),在边缘膜、足、 肝胰腺和血细胞中不表达(图6)。

2.3 PmCHST1a基因RNAi结果

RNAi后PmCHST1a mRNA的表达 实时荧 光定量技术检测RNA干扰后PmCHST1a在中央膜 的表达量。结果显示,实验组与对照组相比,表达 量显著下调54.33%(P<0.05)(图7-a)。故PmCHST1a 的dsRNA显著抑制PmCHST1a mRNA在马氏珠母 贝中央膜中的表达水平。

RNAi后外套膜外液硫酸角质素的浓度RNAi 后,与对照组相比,实验组马氏珠母贝外套膜 外液硫酸角质素浓度显著下降70.31%(P<0.05) (图7-b)。说明PmCHST1a的dsRNA显著抑制外套 膜外液中硫酸角质素的合成。

RNAi后贝壳珍珠层的超微结构 对照组珍 珠层表面呈现典型的文石晶体结晶结构,珍珠 层为阶梯状规则排列,结晶体及结晶层分布规 则,结晶表面光滑(图8-a, 8-b);图8-d和8-e可以 观察到单个结晶体板块为规则六边形,边界清 晰,结晶体板块逐渐增大,相互连接形成光滑 结晶层。而实验组珍珠层内表面晶体生长紊 乱,典型文石结晶形貌消失,结晶层表面无明显 结构特征层析,表面粗糙,且具有空洞(图8-c); 图8-f显示结晶板块生长紊乱,结构不规则,边 界不清晰,板块之间连接不紧密,结晶层表面 出现空洞。

3 讨论

硫酸角质素磺基转移酶通过催化磺酸化作

671

1	$a catggggactgtcaaatcttggaagatttcattgtactgtccctattttatatatctatttgtactgtatgcacataatttcatttt \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
1	М
91	GTCGAAAATGAGGAAATGGACAGTTTCACTATTTGTAACGGGCTCATTAATTGCCATGATATTTGTATACGACTTCGTAAATGACAGAAG
2	SKMRK <u>WTVSLFVTGSLIA</u> MIFVYDFVNDRR
181	AGTATGGACCAAATATGGAATGAGTACCCCGAGATTACGCAACATGTTTTCCAAACTTCGTACAGATTTTAGAGACAATCATCCAGCACC
32	VWTKYGMSTPRLRNMFSKLRTDFRDNH <mark>PAP</mark>
271	AATCTTGATTCTATCATATATGAGAAGTGGATCAACGTTCCTTGGTGACGTCATTCAATCAA
62	ILILSYMRSGSTFLGDVIQSSPDVFYIFEP
361	ATTATGGAGCACAGCTTATTTCCCTTGGCCTCTGAAAGATCTGTACGGAAATGACATTGGTGGAACATTTGATGAAATGACTAAACAGAT
92	LWSTAYFPWPLKDLYGNDIGGTFDEMTKQI
451	ACTGAAAGCCGTTTTCACCTGCCAGATTTCAAAACTGCCGACACAGTTGTTTGACAATGATAATTTTATATCTGTCAGCAGAACAACACTTTTGACAATGATAATTTTATATCTGTCAGCAGAACAACACTTTTGACAATGATAATTTTATATCTGTCAGCAGAACAACACTTTTGACAATGATAATTTTATATCTGTCAGCAGAACAACACTTTTGACAATGATAATTTTATATCTGTCAGCAGAACAACACTTTTGACAATGATAATTTTATATCTGTCAGCAGAACAACACTTTTGACAATGATAATTTTATATCTGTCAGCAGAACAACACTTTTGACAATGATAATTTTATATCTGTCAGCAGAACAACACTTTTGACAATGATAATTTTATATCTGTCAGCAGAACAACACTTTTTGACAATGATAATTTTATATCTGTCAGCAGAACAACAACTTTTGACAATGATAATTTTATATCTGTCAGCAGAACAACAACTACTGATGATGATGATAATTTTATATCTGTCAGCAGAACAACAACTACTGACAATGATGATAATTTTATATCTGTCAGCAGAACAACAACTACTGACAATGATGATAATTTTATATCTGTCAGCAGAACAACAACTACTTTTATATCTGTCAGCAGAACAACAACTACTGACAATGATGATAATTTTATATCTGTCAGCAGAACAACAACTACTTTTATATCTGTCAGCAGAACAACAACTACTGACAATGATGATGATGATGATGATGATGATGATGATGATGATG
122	LKAVFTCQISKLPTQLFDNDNFISVSRTTL
541	${\tt GCCGTTCAAGCATTGCAAGAAGAACACTCTTCTGACATTTCATCCTGCGTAGAACAGCTTCAAAGGGCATGTCTGAGATCTAAGTATGTTCT}$
152	PFKHCKKNSSDISSCVEQLQRACLRSKYVL
631	GACAAAGTGTGTAAAAATTACAAAGCGACGCGATTCTCGGAATCAAAGAGGATTTCCCTGATTTAAAAAATAGTTCACATGATCCGTGATCC
182	TKCVKLQSDAILGIKEDFPDLKIVHMIRDP
721	${\tt GAGAGCAACGTTGAATAGTCGAAAGAGGCTTCGGGCCATAGGGGGGGG$
212	RATLNSRKRLRAIGGANVSMHVIEFCNKVS
811	CTATGATACACGAATCTTCAAGCTATTAAAAAGGGTATATCCGACTGACGTGTTTACTGTTTATCACAACAGTTTTGAGAGCAACCCGCT
242	YDTRIFKLLKRVYPTDVFTVYHNSFESNPL
901	TTTATTTAGCAGAAAAATTGTTTACAGCCTTGAATTTACCATTAAACCCAACTGTTGAGAAAAGACTTGAAGAATTAACCAGCAAAAAGAT
272	L F S R K L F T A L N L P L N P T V E K R L E E L T S K K I
991	TGATTGTACGAGGAATCATTACGTGTGTACCAGCAAATATAATACTGCGGATGCTGTATCAGAATGGCGAAGGGAAATTGAATTTTCATT
302	D C T R N H Y V C T S K Y N T A D A V S E W R R E I E F S F
1081	TGTGAAAGTCGTTGATTCACTCTGTAGAAATGTGTACAGAGCTCATGGATTCCTCCCTTTTGAAAGTCCTGTGATGCTAAAAAATTTAAC
332	V K V V D S L C R N V Y R A H G F L P F E S P V M L K N L T
1171	$\label{eq:ATTTCCATCACAGAAC} \texttt{IGA} \texttt{gttttgattatcccct} a a a a cat \texttt{gcgag} a a cat \texttt{atgtatctg} a a a a \texttt{gcgag} a a t \texttt{atgtatctg} a a a \texttt{gcgag} a a \texttt{atgtatctg} a a \texttt{atgtatctg} a \texttt{atgtatctg} a \texttt{atgtatctg} a \texttt{atgtatctg} a \texttt{atggag} a \texttt{atggag} a \texttt{atgtatctg} a \texttt{atgtatctg} a \texttt{atgtatctg} a \texttt{atggag} a \texttt{atggag} a \texttt{atggag} a \texttt{atgtatctg} a \texttt{atgtatctg} a \texttt{atgtatctg} a \texttt{atggag} a \texttt{atggag} a \texttt{atggag} a \texttt{atggag} a \texttt{atggag} a \texttt{atggag} a \texttt{atgtatctg} a \texttt{atgtatctg} a \texttt{atggag} a a$
362	F P S Q N
1261	a atgtt catcgt ccatgccttg at attt caa aatct caa aa agaa atgtt ta att at caacctg a atg a agt at a a att cactag agaa atgtt catca at the catcg a and the catcag agaa at the catcag agaa a
1351	teteattecaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

图 1 PmCHST1a的核苷酸序列分析

5'和3'非编码区用小写字母表示;编码区以及推导的氨基酸序列用大写字母表示;方框内(ATG)和(TGA)分别为起始密码子和终止密码 子;红色代表信号肽;下划线表示跨膜结构域;阴影部分为磺基转移酶-3结构域

Fig. 1 The nucleotide sequence analysis of *PmCHST1a*

5'UTR and 3'UTR are indicated with small letters; open reading frame and the deduced amino acid sequences are indicated with capital letters; nucleotide with a frame represents the initiation codon (ATG) and stop codon (TGA); the red sequence is the signal peptide; the underlined sequence represents the transmembrane region; the sequence in gray background represents the sulfotransfer-3 domain

SMART software

图 3 PmCHST1a跨膜结构域预测

美洲鲎 L. polyphemus	-IYILLTTYF <mark>RSGS</mark> TFLGEVLQHHSRDIF <mark></mark> YHY <mark>EP</mark> LHHLTLSTRVT	61
加利福尼亚海兔 A. californica	QILLVTHG <mark>RSGS</mark> TYTSAIISAH-PEV <mark>B</mark> FLF <mark>EP</mark> LLLYEDDRWPPK-LPLYR	121
鸭嘴海豆芽 L. anatina	-RQVIILTYQ <mark>RSGS</mark> SFTGELFNKN-DHA <mark>F</mark> YLF <mark>EP</mark> IWGFYKSMEKYGSLTYPNGTTKPAPK	118
光滑双脐螺 B. glabrata	-SHVMLLSYG <mark>RSGS</mark> SFTAALIAHH-KDVFYTFEPLFVLARWPNNSVNERFY	115
马氏珠母贝 P. martensii	PAPILILSYM <mark>RSGS</mark> TFLGDVIQSS-PDV <mark>F</mark> YIF <mark>EP</mark> LWSTAYFPWPLKDLYGN-DIG	111
长牡蛎 C. gigas	-MPVVILTYM <mark>RSGS</mark> SFFGEVLQAS-DDVFYLFEPLRTIQFHFRKSNTFYYLNGNNR-SY	119
	::: :: ****: . :: . *: :**:	
美洲鲎 L. polyphemus	-QNHSVDAVNQLENFLR <mark>O</mark> NFTNAKYLSHVQKKGNEFMFTK	100
加利福尼亚海兔 A. californica	QNDMKEESLQKVKEMLNQQFTNGSLVERSLTVTTLAQVF	160
鸭嘴海豆芽 L. anatina	HGIEFDETTQIVDDLLNGRMFNIPLDVTAPYDIVFQIFRTDKGKEIVVPKDNHDFQAGLG	178
光滑双脐螺 B. glabrata	NTQE-VRSREIIHSFLTCDFPFDTFSKLDNSFHRTVD	151
马氏珠母贝 P. martensii	-GTFDEMTKQILKAVFTCQISKLPTQLFDNDNFISVS	147
长牡蛎 C. gigas	-TNFLDIAADVLNEIFQCNFENLPLPFFA-DGFLSKG	154
	: : :: * :	
美洲鲎 L. polyphemus	NYFLWEKCKTSEKLCYEPTFMSVVCQEAKIHVMKTVRLPMRYVQA	145
加利福尼亚海兔 A. californica	QEFSACRKYKETQGADERVCFE-MLRIPCQKSHVTLVKTIRIPLPWTLN	208
鸭嘴海豆芽 L. anatina	RHQRLNDFKYFDC-LK-SKRGLGKASCLP-LMQEACRTASLKTLKLLRIRMNQVET	204
光滑双脐螺 B. glabrata	SSRTLYDC-LYSQKSGFDHFSCYK-DYIDLCKSHKVTLVKTIRYRVQWAEW	200
马氏珠母贝 P. martensii	RTTLPFKHCKKNSSDISSCVE—QLQRACLRSKYVLTKCVKLQSDAILG	193
长牡蛎 C. gigas	KKSKEFRVCMHQKTKNTSLNEATKQCAL-MMKKMCQASKYIILKTIRIPLKILVP	207
	* * * * * ::	
美洲鲎 L. polyphemus	LLEQTSDLDIRVVYLV <mark>RDPR</mark> GIFN <mark>S</mark> RRKLAWCKATNCSSVSVL <mark>C</mark> QEIEEDVQHFYRL	202
加利福尼亚海兔 A. californica	MIEENPNLKVIYLV <mark>RDPR</mark> AVIL <mark>S</mark> QMLRLRNRGNLT-LEQSLDIFCPRLQEDVQAAREL	265
鸭嘴海豆芽 L. anatina	LMQKNPRLKVIHLV <mark>RDPR</mark> AALISRRKVGEMIGNLEMEANMRCMEILRDYSTRQRL	259
光滑双脐螺 B. glabrata	FMKKYPN—FKLIILV <mark>RDPR</mark> ATLF <mark>S</mark> QASVFRKFDWPNQVANFSRQHCGLVAEDIAAGELL	258
马氏珠母贝 P. martensii	IKEDFPDLKIVHMI <mark>RDPR</mark> ATLN <mark>S</mark> RKRLRAIGGAN-VSMHVIEFCNKVSYDTRIFKLL	249
长牡蛎 C. gigas	FPE1FPKFK1LHLL <mark>RDPR</mark> ATLK <mark>S</mark> QSRFGVVRTEY-MQENATKFCNRVYNDIT1ARQT	263
	:::::::****.:*: * : *	
美洲鲎 L. polyphemus	QNIFPGKLSIVRFEDLSYNELKETRALFNNLKLQFSEYAKQYLTNHTSVKNAEKQPF	259
加利福尼亚海兔 A. californica	LSRFPKRFKIVRYETGVMSPDHFAKELLDFADLS	299
鸭嘴海豆芽 L. anatina	EHVFPNRIMQVRYEDLAEFPTETATAIYEFLGLP	293
光滑双脐螺 B. glabrata	LKRYPGRVLGIRYEDGALEPYKYAQKIYRFLGID	292
	KRVVDTDVETVVHNSFESN D I I ESRKI FTALNI DI NDTVEKRI FELTSKKIDCTRNHVVC	309
马氏珠母贝 <i>P. martensii</i>	KKYTI TIDVI TVTIKOTEON EEL OKKEL TKENEL EN TVEKKEELETOKKIDOTKKIITVO	

图 4 PmCHST1a与其他物种的氨基酸序列比对

"*"和黑色阴影表示保守的氨基酸;":"和灰色阴影表示强相似的氨基酸;"."表示弱相似的氨基酸;右侧数字表示比对序列氨基酸的 位置

Fig. 4 Amino acid sequence alignment of *PmCHST1a* with other species' *CHST1*

"*" and black background indicate the conserved amino acid; ":" and gray background indicate amino acid with strong similarity; "." indicates amino acid with weak similarity; the right numbers show the position of amino acid in the sequence

用,参与硫酸角质素蛋白聚糖(KSPG)糖链的生物合成。硫酸角质素蛋白聚糖广泛存在于动物 组织中,具有抗炎、抗过敏、参与生物矿化等 多种生理功能^[1-3]。本研究通过对硫酸角质素磺基转移酶基因*PmCHST*1a进行全长克隆和功能分析,探索马氏珠母贝硫酸角质素磺基转移酶基

因在贝壳珍珠层形成过程中的作用。

本研究利用RACE技术获得了*PmCHST1a*的 cDNA全长,SMART软件预测发现*PmCHST1a*具 有典型的磺基转移酶结构域(sulfotransfer_3 domain)。另外,*PmCHST1a*氨基酸序列还包含信 号肽序列和跨膜结构域,其N端位于膜外,催化 结构域位于膜内,符合高尔基体偶联磺基转移 酶的结构特点,属于高尔基体偶联磺基转移 酶^[16-17]。研究表明,高尔基体偶联磺基转移酶参 与磺酸化糖胺聚糖、糖蛋白、酪氨酸肽段以及 硫酸乙酰肝素等^[18]。因此,*PmCHST1a*可能通过 参与硫酸角质素的生物合成,参与马氏珠母贝 的生理过程。

Nudelman等^[19]研究发现,在鹦鹉螺(Nautilus

图 6 PmCHST1a在马氏珠母贝不同组织中的 表达分布

1. 边缘膜; 2. 中央膜; 3. 闭壳肌; 4. 足; 5. 鳃; 6. 性腺; 7. 肝胰腺; 8. 血细胞; 标注不同字母间差异显著(*P*<0.05)

Fig. 6 Expression distribution of *PmCHST1a* in different tissues from *P. martensii*

1. marginal zone; 2. central zone; 3. adductor muscle; 4. foot; 5. gill; 6. gonad; 7. hepatopancreas; 8. hemocytes; mean values with different letters are significant different (P<0.05)

pompilius)和江珧(Pinna rudis)的贝壳文石晶体的 中心区域发现了成环形的富磺酸基团区域,参 与晶体成核。Fernandez等^[4]亦发现,在红鲍贝壳 珍珠层的有机质中存在硫酸角质素,参与贝壳 珍珠层的形成。由此可见富含磺酸基团的硫酸 角质素在贝类的生物矿化过程中发挥重要作 用。本研究检测了PmCHST1a基因在马氏珠母贝 各组织中的表达分布,发现PmCHST1a在中央膜

图 7 RNAi对 PmCHST1a相对表达量以及外套膜外液硫酸角质素浓度的影响

(a) RNAi后, *PmCHST*1a的相对表达量; (b) RNAi后, 外套膜外液中硫酸角质素的浓度; 1. 空白对照组; 2. 阴性对照组; 3. 实验组; *.差异显著(P<0.05)

Fig. 7 The influence of RNAi on the *PmCHST1a* relative expression and the extrapallial fluid keratan sulfate concentration

(a) the expression of PmCHST1a after RNAi; (b) the keratan sulfate concentration of extrapallial fluid after RNAi; 1. Rnase-free water group; 2. dsRNA-*RFP* group; 3. dsRNA-*PmCHST1a* group; mean values with "*" is significant different (P < 0.05)

图 8 RNAi对贝壳珍珠层超微结构的影响

a、d为DEPC对照组; b、e为RFP对照组; c、f为实验组; d、e、f分别为a、b、c的局部放大

Fig. 8 The influence of RNAi on the ultrastructure of shell nacre

a, d are the DEPC group; b, e are the RFP group; c, f are the experiment group; d, e, f are enlarged of a, b, c respectively

内高表达。外套膜是双壳贝类贝壳形成的组 织,而中央膜主要参与分泌珍珠质形成珍珠层^[2021]。 因此,推测*PmCHST1a*可能参与马氏珠母贝中央 膜硫酸角质素的合成过程,从而影响贝壳中硫 酸角质素的含量,参与贝壳珍珠层形成的生物 矿化过程。

为证实PmCHST1a基因是否影响硫酸角质素 以及贝壳珍珠质的生物矿化过程,本研究利用 RNA干扰技术沉默 PmCHST1a基因在中央膜的表 达,结果显示外套膜外液中硫酸角质素浓度显 著降低(P<0.05); 贝壳内表面新生成珍珠质结晶 层形貌亦发生紊乱。外套膜外液位于贝壳与外 套膜组织之间,由外套膜组织分泌产生。外套膜 外液含有贝壳形成所需前体,以及晶体结晶所 需的物理化学环境,与贝壳形成直接相关^[19, 22]。 本研究中PmCHST1a基因的沉默降低了该磺基转 移酶催化的磺酸化反应,使得外套膜外液中磺 酸基团含量显著降低(P<0.05),说明硫酸角质素 磺基转移酶可能参与了外套膜外液中硫酸角质 素的生物合成过程。软体动物贝壳的有机质中, 磺酸基团可以富集Ca²⁺,促进晶体结晶成核和晶 体生长而调控碳酸钙晶体的结晶[4,9]。因此, PmCHST1a基因沉默后,外套膜外液中磺酸基团 含量的降低, 使得外套膜外液的结晶环境发生 改变,从而影响贝壳珍珠质的形成过程,导致 珍珠层结晶形态紊乱从而影响珍珠层形成。这 与Nudelman等^[19]、Addadi等^[23]和Kawasaki等^[24]的研究结果相一致。故*PmCHST1a*可能通过参与外套膜外液中糖胺聚糖硫酸角质素的合成,进而影响贝壳珍珠层的生物矿化过程。

本研究通过对马氏珠母贝磺基转移酶基因 PmCHST1a的全长克隆及RNAi实验,证实PmCHST1a 参与了贝壳珍珠层的形成,参与途径可能影响 了硫酸角质素的合成。

参考文献:

[1] 王延鹏. 鲨鱼软骨硫酸角质素的制备及其壳聚糖纳米 粒抗类风湿性关节炎作用的研究[D]. 济南: 山东大学, 2008.

> Wang Y P. Preparation of shark keratin sulfate and its chitosan nanoparticle and the antirheumatoid arthritis fuction[D]. Jinan: Shandong University, 2008 (in Chinese).

- [2] Reid D G, Duer M J, Murray R C, et al. The Organic– Mineral interface in teeth is like that in bone and dominated by polysaccharides: universal mediators of normal calcium phosphate biomineralization in vertebrates[J]. Chemistry of Materials, 2008, 20(11): 3549-3550.
- [3] Carrino D A, Dennis J E, Wu T M, et al. The avian eggshell extracellular matrix as a model for biomineralization[J]. Connect Tissue Research, 1996, 35(1-4):

325-329.

- [4] Fernandez M S, Arriagada K, Arias J L. SEM localization of proteoglycans in abalone shell (*Haliotis rufescens*)[J]. Microscopy and Microanalysis, 2007, 13(2): 1462-1463.
- [5] Kinne R W, Fisher L W. Keratan sulfate proteoglycan in rabbit compact bone is bone sialoprotein II [J]. Journal of Biological Chemistry, 1987, 262(21): 10206-10211.
- [6] Wendel M, Sommarin Y, Heinegård D. Bone matrix proteins: isolation and characterization of a novel cellbinding keratan sulfate proteoglycan (Osteoadherin) from bovine bone[J]. The Journal of Cell Biology, 1998, 141(3): 839-847.
- [7] Mazany K D, Peng T, Watson C E, et al. Human chondroitin 6-sulfotransferase: cloning, gene structure, and chromosomal localization[J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1998, 1407(1): 92-97.
- [8] Hemmerich S, Verdugo D, Rath V L. Strategies for drug discovery by targeting sulfation pathways[J]. Drug Discovery Today, 2004, 9(22): 967-975.
- [9] Habuchi O. Diversity and functions of glycosaminoglycan sulfotransferases[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2000, 1474(2): 115-127.
- [10] Habuchi O. Carbohydrate (Keratan Sulfate Gal-6) sulfotransferase 1 (CHST1)[J]. Handbook of Glycosyltransferases and Related Genes, 2014: 989-996.
- [11] Yan F, Luo S J, Jiao Y, et al. Molecular characterization of the BMP7 gene and its potential role in shell formation in *Pinctada martensii*[J]. International Journal of Molecular Sciences, 2014, 15(11): 21215-21228.
- [12] Jiao Y, Wang H, Du X D, et al. Dermatopontin, a shell matrix protein gene from pearl oyster *Pinctada martensii*, participates in nacre formation[J]. Biochemical and Biophysical Research Communications, 2012, 425(3): 679-683.
- [13] Yano M, Nagai K, Morimoto K, et al. A novel nacre protein N19 in the pearl oyster *Pinctada fucata*[J].
 Biochemical and Biophysical Research Communications, 2007, 362(1): 158-163.
- [14] 罗少杰, 闫芳, 郑哲, 等. 马氏珠母贝基质金属蛋白酶
 基因MMP-17的克隆及表达分析[J]. 水产学报, 2015, 39(7): 978-988.

Luo S J, Yan F, Zheng Z, et al. Molecular cloning and

expression analysis of matrix metalloproteinase 17 gene from *Pinctada martensii*[J]. Journal of Fisheries of China, 2015, 39(7): 978-988(in Chinese).

- [15] 焦钰,田群莉,杜晓东,等.马氏珠母贝LST8 基因 cDNA的分子特征及表达分析[J].基因组学与应用生 物学,2014,33(1):10-15.
 Jiao Y, Tian Q L, Du X D, *et al.* Molecular characterization and expression analysis of LST8 cDNA from *Pinctada martensii*[J]. Genomics and Applied Biology, 2014, 33(1):10-15(in Chinese).
- [16] Paul P, Suwan J, Liu J, et al. Recent advances in sulfotransferase enzyme activity assays[J]. Analytical and Bioanalytical Chemistry, 2012, 403(6): 1491-1500.
- [17] Young R W. The role of the Golgi complex in sulfate metabolism[J]. The Journal of Cell Biology, 1973, 57(1): 175-189.
- [18] Kakuta Y, Pedersen L G, Pedersen L C, *et al.* Conserved structural motifs in the sulfotransferase family[J]. Trends in Biochemical Sciences, 1998, 23(4): 129-130.
- [19] Nudelman F, Gotliv B A, Addadi L, et al. Mollusk shell formation: mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre[J]. Journal of Structural Biology, 2006, 153(2): 176-187.
- [20] 师尚丽, 焦钰, 杜晓东, 等. 马氏珠母贝外套膜细胞的 超微结构观察[J]. 广东农业科学, 2012, 39(8): 135-137. Shi S L, Jiao Y, Du X D, et al. Ultrastructure of mantle epithelial cells in *Pinctada martensii*[J]. Guangdong Agricultural Sciences, 2012, 39(8): 135-137(in Chinese).
- [21] Barry P H, Diamond J M. A theory of ion permeation through membranes with fixed neutral sites[J]. The Journal of Membrane Biology, 1971, 4(1): 295-330.
- [22] Kobayashi S. Studies on shell formation. X. a study of the proteins of the extrapallial fluid in some molluscan species[J]. Biological Bulletin, 1964, 126(3): 414-422.
- [23] Addadi L, Moradian J, Shay E, *et al.* A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: relevance to biomineralization[J]. Proceedings of the National Academy of Sciences, 1987, 84(9): 2732-2736.
- [24] Kawasaki K, Buchanan A V, Weiss K M. Biomineralization in Humans: making the Hard Choices in Life[J]. Annual Review of Genetics, 2009, 43(1): 119-142.

Cloning and function of sulfotransferase gene *PmCHST1a* in *Pinctada martensii*

WANG Qingheng^{1,2}, HAO Ruijuan^{1,2}, ZHENG Zhe^{1,2}, DENG Yuewen^{1,2}, DU Xiaodong^{1,2*}

(1. Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China;

2. Guangdong Technology Research Center for Pearl Aquaculture and Process, Zhanjiang 524088, China)

Abstract: Biomineralization is the process by which mineral crystals are deposited in an organized fashion in the matrix (either cellular or extracellular) of living organisms and the deposition of precise arrays of inorganic crystals in many organisms involves controlled nucleation at interfaces between the crystals and substrate macromolecules. Mollusc shells are used as a model for studying "organic-matrix-mediated" biomineralization, in which crystals are nucleated and grow in a pre-formed structural framework composed of proteins and polysaccharides. Acidic matrix macromolecules glycosaminoglycans were also associated with biological crystal growth and keratan sulfate widespread in animal tissues had a potential role in the process of biomineralization. Sulfotransferase plays a vital role in catalyzing the transfer of sulfonic acid groups in the processes of glycosaminoglycan synthesis, and glycosaminoglycans keratan sulfate with copious amounts of negatively charged sulfonic acid groups participate in the nucleation process of biomineralization. In this study, we cloned the sulfotransferase gene PmCHST1a (Pinctada martensii carbohydrate sulfotransferase 1a) which participated in the synthesis of keratan sulfate and explored the function of sulfotransferase and keratan sulfate in the biomineralization. The full length sequence of PmCHST1a gene was obtained using the RACE technology, and we detected its expression pattern by real-time PCR. RNAi technique was used to study the potential functions of *PmCHST*1*a* in nacre formation, and we detected the effects to the synthesis of glycosaminoglycans keratan sulfate at the same time. The results showed that *PmCHST1a*, whose full length was 1 385 bp, encoded a protein of 366 amino acids. PmCHST1a carried with a typical Sulfotransferase-3 domain (Sulfotransfer-3 domain), a signal peptide and a transmembrane domain which made the protein located in the Golgi apparatus. The results of realtime PCR showed that *PmCHST1a* was highly expressed in the central zone of mantle. After the RNA interference experiments, the expression of *PmCHST1a* significantly decreased in the central zone of *P. martensii*, in union with the significant reduction of the concentration of glycosaminoglycans keratan sulfate in the extrapallial fluid. And the shell nacre crystallized irregularly compared with two control groups. These results showed that *PmCHST1a* may affect the formation of nacre through affecting the concentration of glycosaminoglycans keratan sulfate in the extrapallial fluid. This study provided the fundamental basis for further research of sulfotransferase and glycosaminoglycans in the formation of nacre.

Key words: Pinctada martensii; sulfotransferase; keratan sulfate; RNAi

Corresponding author: DU Xiaodong. E-mail: gdoudxd@hotmail.com

Funding projects: National Natural Science Foundation of China (31372526, 31272635); Project of Enhancing School with Innovation of Guangdong Ocean University (GDOU2014050207)