四片式中层拖网主要部件尺寸变化 对其性能的影响

陈雪忠 郁岳峰 刘 峰 石承军 (中国水产科学研究院东海水产研究所,上海 200090)

摘 要 通过拖网系列模型水池试验,研究四片式中层拖网网衣主要部件尺寸变化对网具 性能的影响。试验结果表明:(1) 因侧网宽度变化对扫海面积影响的规律是侧网宽度越小,扫海面 积越大;在拖速3.5~5.0knot的范围内,侧网与背(腹)网之比为0.714时,网口垂直扩张最大。(2) 在网袖长度与网具全长之比为13.258%~30.936%范围内,扫海面积随着网袖长度的增长而增大; 当其比值大于30.936%以后,扫海面积随着网袖长度的增长而减小。网袖长度对网具阻力影响的 趋势是网袖长度越长网具阻力越大。(3) 网身长度与网口拉直长度之比为25.55%时,网口垂直扩 张最佳、能耗系数最小。

关键词 中层拖网,垂直扩张,网具阻力,扫海面积,模型试验

多片式拖网与二片式拖网相比较,其主要特点是网具在拖曳过程中,使拖网网衣阻力尽可 能通过网具的侧力纲传导至网袖端,使网口垂直扩张随拖速的提高而下降的幅度较小。由于 中上层鱼类一般都有较强的活动能力,游泳速度较快,它们对外界因素的刺激反应比较敏捷, 这就要求中层拖网在作业过程中有较快的拖速和较大的网口垂直扩张,因此,世界各国海洋渔 业生产中所使用的中层拖网绝大多数采用多片式网型[Stone 1988, Van Marlen 1988]。在多 片式网型中,四片式拖网以其结构和制作工艺较简单,而被更广泛应用。

70年代以来,许多学者对中层拖网的研究进行了大量的工作。在渔具力学理论研究方面,日本等国的学者应用渔具模型试验和海上实物观测等方法分别对中层拖网系统的静态、动态力学特性进行了大量研究[西山作藏等 1982,松田皎等 1991,胡夫祥等 1989,三浦汀介等 1991]。对网具改革方面,在中层拖网网身前部使用六角形网目、大菱形网目或绳索代替网衣 来放大网具规格是近 20 多年来中层拖网网具改革的主流[Stone 1988, Van Marlen 1988]。对 于网具局部结构与属具配备的改革,主要进行了力纲装配形式[Wileman 1988]、配纲系数 [Lonnevik 1988]、浮沉力配备[Fujiishi 1990]对网具性能影响的研究。本文通过拖网模型水池 试验,研究四片式中层拖网侧网宽度、网袖长度和网身长度变化对其网具性能的影响状况。

1 材料与方法

1.1 母型网

为了研究四片式中层拖网侧网宽度、网袖长度和网身长度变化对其网具性能的影响,我们 选择上海市远洋渔业公司 960.000 m × 226.275 m(107.800 m) 中层拖网为渔具模型试验母型

[©] 收稿日期, 1996, China Academic Journal Electronic Publishing House. All rights reserved. http://www

网。960.000m × 226.275m(107.800m) 中层拖网是90 年代初我国在北太平洋捕捞狭鳕生产 中普遍使用的网具。该网具网袖拉直长度为40m, 与网口拉直周长之比为4.17%; 网身拉直 长度为149.315m, 与网口拉直周长之比为15.55%; 侧网与背(腹) 网横向拉直长度之比为0. 846。

1.2 模型试验的内容与试验条件

1.2.1 侧网宽度变化系列

在网口拉直周长(C)不变的条件下,改变侧网宽度(横向拉直长度,L_f)与背(腹)网宽度 (L_d),使其比值从 0.412 变化到 2.430(表 1)。

	表1	侧网宽度变化系列
--	----	----------

Table 1 The serial changes of the width of net side panel

网具编号	L _d (m)	L _f (m)	$L_{\rm f}/L_{\rm d}$	L _f /C(%)	试验条件
A ₁	340	140	0.412	14. 583	
A_2	280	200	0.714	20.833	$\lambda = 35, \lambda' = 10; U_1 = 0.35; L/S = 0.4$
A ₃	260	220	0.846	22.917	上/下空(手)纲长度 173.5/177.3m;
A_4	240	240	1.000	25.000	叉纲长度65.6m;浮力 850kg;
A_5	200	280	1.400	29.167	沉力 450kg; 重锤 385× 2kg
A ₆	140	340	2.430	35.417	

1.2.2 网袖长度变化系列

保持其他各部分网衣尺寸不变,只改变网袖长度(纵向拉直长度,L_s),网袖长度的变化范围为 30~80m,使其与网具全长(L_a)的比值从 13.258% 变化到 35.355% (表 2)。

		-	-	-
网具编号	L _s (m)	$L_{s}/L_{a}(\%)$	L _s /C(%)	试验条件
B ₁	30	13. 258	3. 125	
B_2	40	17.678	4. 167	λ = 30, λ' = 10; U ₁ = 0. 35; L/S= 0. 4;
B ₃	50	22.097	5.208	上/下空(手) 纲长度 173.5/177.3m;
B_4	60	26.516	6.250	叉纲长度65.6m;浮力503kg;
B5	70	30. 936	7.292	沉力 450㎏; 重锤 385× 2㎏
B ₆	80	35.355	8.333	

表 2 网袖长度变化系列 Table 2 The serial changes of the length of net wings

1.2.3 网身长度变化系列

为了使网口形状及网身前部线型保持不变, 网身长度(纵向拉直长度, L_b) 变化部分只是在 网身中部进行。网身长度从母型网的 149.315m 增大到 341.315m(表 3)。

	Т	able 3 The serial chan	he serial changes of the length of net body							
网具编号	$L_b(m)$	L _b /L _a (%)	L _b / C(%)	试验条件						
C_1	149.315	65.988	15.554	$(2 - 20)^{2} = 10$, $U = 0.25$, $U/S = 0.4$.						
C_2	197.315	71.941	20. 554	$A = 30, A = 10; U_1 = 0.35; L/S = 0.4;$						
C ₃	245.315	76.120	25. 554	工/下王(于)钢衣皮 1/3.3/1//.3m;						
C_4	293.315	79.215	30. 554	又纳太皮 65. 6m; 序刀 50.5kg;						
C ₅	341.315	81.600	35. 554	加力 430kg; 重任 383×2kg						

表 3 网身长度变化系列 Je 3 The serial changes of the length of net b

© 1994-2012 Chima Academic Journal Electronic Publishing House. All rights reserved. http://www

50

1.3 模型试验准则与试验测量内容

模型试验于 1992 年 10 月在东海水产研究所拖网模型试验水池进行。模型试验准则采用 田内渔具模型试验准则。在各试验速度的条件下,测量网具阻力、网口垂直扩张、网袖端间距 以及观察网具各部分网衣的展开情况。

2 结果

2.1 侧网宽度

试验结果表明,四片式中层拖网在其他条件不变时,只改变侧网宽度,对网口垂直扩张 60 有很大的影响(图1)。在 Lf/Ld 值从 0.412 变化到 2.430 的 6 顶网具中,其值为 0.714 的 A₂ 网和 0.846 的 A₃ 网的网口垂直扩张比较 ⁽¹⁾ 大。在拖速 3.5~ 5.0knot 的范围内,A₂ 网的 网口垂直扩张最大,A₃ 网的网口垂直扩张次 ⁽¹⁾ 之。当拖速增加到 5.0knot 以上时,A₃ 网的网 ⁽¹⁾ 之。当拖速增加到 5.0knot 以上时,A₃ 网的网 ⁽¹⁾ 一垂直扩张超过 A₂ 网而居首位。Lf/Ld 值为 0.412 的 A₁ 网,其网口垂直扩张虽然不如 A₂、 A₃ 网,但比 Lf/Ld 值等于或大于 1 的其他 3 顶 网的网口垂直扩张变化的规律是其网口垂直 扩张随着 Lf/Ld 值增大而减小。

4 侧网宽度变化对网具阻力和能耗系数的影响

Table 4 1	he effect of	the width	of net	side panel	on the	drag and	the energy	consumption	coefficient
-----------	--------------	-----------	--------	------------	--------	----------	------------	-------------	-------------

网貝	L _f	W _s (m)	3.5(knot)	4. 0(knot)		4. 5(knot)		5.0(knot)		5. 5(knot)		6. 0(knot)	
编号	$\overline{L_d}$		R	Ce	R	Се	R	Ce	R	Ce	R	Ce	R	Ce
A_1	0.412	53.90	94.92	36.00	120. 25	52.99	148.15	74. 52	178.55	101.10	211.39	133.23	246. 62	171.40
\mathbf{A}_{2}	0.714	43.54	89.06	38.32	112.72	56.19	138.75	78.77	167.10	106.53	197.69	140.01	230. 49	179.66
${\rm A}_{3}$	0.846	43.12	82.58	40.36	105.57	57.22	131.09	77.84	159.11	102.52	189. 58	131.53	222.47	165.11
\mathbf{A}_4	1.000	40.32	87.51	49.22	110.26	70.77	135.16	97.47	162.17	129.81	191.23	168.21	222. 28	213.11
A_5	1.400	34.72	89.50	61.43	113.12	90.49	139.10	127.37	167.34	172.93	197.81	228.05	230.45	293. 59
A_6	2.430	24.08	106.13	121.11	125.90	170. 85	146.36	231.40	167.48	303.58	189. 20	388.16	211.29	485.70

注: R 单位为 KN; Ce 单位为(J/m³)

4,

侧网宽度与网具扫海面积关系为侧网 宽度越小,扫海面积越大(图 2)。如 L_f/ L_d 值为 0.412 的 A1 网与 Lf/Ld 值为 2.430 的 2800 A_6 网相比较,在各试验拖速下, A_1 网的扫 2500 海面积平均为 1946. 25m², A₆ 网的扫海面 2200 积平均为 619. 62m². A1 网的扫海面积是 A6网的 3.14 倍。而 A1 网的网具阻力平均 🕯 1900 画积(为 166.64KN, A6 网的网具阻力均为 157. 1. 東口 76KN(表4), 二者相比, A₁ 网的网具阻力 平均只大了 8.88KN。从表 4 还可知, 侧网 宽度与能耗系数(伍贻惠等,1992)的关系 基本是成正比关系。

2.2 网袖长度

从表 5 可知, 在拖速 3.5~4.0knot 的 范围内, 网袖长度最短的 B₁ 网的网口垂直 扩张最大, 网袖长度最长的 B₆ 网的网口垂 直扩张最小, 两者相差平均为 19.633m。

the sweeping area of net

当拖速增到或超过 4.5knot 时, 网袖长度为 40m 的 B2 网的网口垂直扩张取代 B1 网而居首位, B1 网的网口垂直扩张降居第二位。四片式中层拖网的网袖长度从 40m 开始逐渐增长, 其与网 口垂直扩张之间的关系总的趋势是成反比关系, 即网袖长度越大, 网口垂直扩张越小。

表 5 网袖长度变化与网口垂直扩张的关系

Table 5 The relationship between the changes of the length of net wings and the vertical opening of net mouth

网具编号	$L_s(m)$	3.5(knot)	4. 0(knot)	4. 5(knot)	5.0(knot)	5.5(knot)	6. 0(knot)	$\overline{H}(m)$
B_1	30	67.394	57.001	49.172	43.085	38.230	34. 277	48.193
B_2	40	60.378	54.441	49.691	45.794	42.532	39.758	48.766
B_3	50	61.405	51.935	44.802	39.256	34.832	31.231	43.910
B_4	60	56.278	49.444	44.109	39.826	36.311	33.373	42.724
B_5	70	54.190	46.923	41.343	36.909	33.310	30.331	40.501
B ₆	80	46.424	38.704	32.968	28.561	25.085	22. 281	32.337

扫海面积随网袖长度的变化的基本规律是, 网袖长度从 30m 增加到 70m 时, 扫海面积随 着网袖长度的增大而增大; 当网袖长度超过 70m 之后, 扫海面积随着网袖长度的增长而减小 (图 3)。试验结果表明, 在拖速 3. 5~4.5knot 之间, 网袖长度为 40m 的 B2 网的网具阻力最小; 当拖速提高到 5.0knot 以上时, 网袖长度最短的 B1 网的网具阻力变为最小, B2 网的次之。网 袖长度变化对网具阻力的影响基本是随着网袖长度的增大, 网具阻力也随着增大。从表 6 可 以看出, 在试验拖速范围内, 网袖长度为 30m 的 B1 网的网具阻力平均为 145.61KN; 当网袖长 度分别增加到 50、80m 时, 网具阻力平均值也分别增加到 153.12、155.69KN。 网袖长度对网

(1) 伍贻惠等. 1992. 拖网模型试验若干问题的研究. 全国水产捕捞学术交流论文集, 第6集. 24~32.

© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www

2800

具阻力的影响是随着拖速的提高而变大。 如在拖速 3.5knot 时,其他 5 顶网的网具阻 力平均只比 B₁ 网的网具阻力大 4.05KN; 而在拖速 6.0knot 时,其平均值则比 B₁ 网 的大 10.62KN。

图 4 所示网袖长度的变化与网具能耗 系数的关系。从各不同网袖长度的试验网 在 3.5~ 6.0knot 试验拖速范围内拖曳,所 得的能耗系数平均值来看,网袖长度最短 的 B₁ 网能耗系数最大,为 110.70J/m³,而 B₅ 网的能耗系数最小,为 86.56J/m³,两者 平均值相差 24.14J/m³。

2.3 网身长度

尽管保持四片式中层拖网网身前部以前的网衣结构和尺寸不变,但网身长度的 变化也会引起网口垂直扩张的较大变化 (图 5)。试验结果表明,身周比(网身长度 与网口拉直长度之比)为 25.55%的 C₃ 网

的网口垂直扩张居各试验网之首,身周比分别为 35.5%、30.55%的 C₅、C₄ 网的网口垂直扩张 次之。因网身长度变化所引起的网口垂直扩张的变化幅度与拖速成正比,即拖速越高,其变化 幅度越大。

表 6 网袖长度变化与网 具阻力变化的关系

Table 6 The relationship between the changes of the length of net wings and the changes of the drags of net

网具	$\mathcal{L}_{\mathbf{s}}$	s 3. 5(knot)		4.0(knot)		4. 5(l	4. 5(knot)		knot)	5. 5(kı	not)	6. 0(knot)		$\overline{\mathbf{R}}$
编号	(m)	R	$\Delta \mathbf{R}$	R	$\Delta \mathbf{R}$	R	$\Delta \mathbf{R}$	R	$\Delta \mathbf{R}$	R	$\Delta \mathbf{R}$	R	ΔR	(K N)
B_1	30	88.20		109.09		131.59		155.62		181.12		208.03		145.61
B_2	40	82.58	- 5.62	105.57	- 3.52	131.09	- 0.50	159.11	+ 3.49	189.58 +	8.46	222. 47 +	14.44	148.40
B ₃	50	94.63	+ 6.43	116. 12	+ 7.03	139.10	+ 7.51	163.49	+ 7.87	189.20 +	- 8.08	216.20 +	8.17	153.12
B_4	60	89.49	+ 1.29	111.75	+ 2.66	135.95	+ 4.36	162.00	+ 6.38	189.85 +	- 8.73	219.42 +	11.39	151.41
B ₅	70	99.39	+ 11.19	120.17	+ 11.08	142.08	+ 10.49	165.05	+ 9.43	189.00 +	- 7.88	213.88 +	5.85	154.93
B ₆	80	95.14	+ 6.94	117.27	+ 8.18	141.03	+ 9.44	166.32	+ 10.70	193.10+	11.98	221. 29 +	13.26	155.69
$\overline{\Delta R}$			+ 4.05		+ 5.09		+ 6.26		+ 7.57	+	9.03	+	10.62	

注: R、△R和 △ R 的单位均为 KN

从表 7 可知, 网身长度变化对网具阻力影响较大, 在 3.5~ 6.0knot 拖速范围内, 网具阻力 最大的 Cs 网与网具阻力最小的 C2 网相比, Cs 网的网具阻力平均值比 C2 网的大 13.78KN。 因网身长度变化所引起的网具阻力变化的幅度受拖速的影响非常小。如 C₅ 网与 C₂ 网比较, 当拖速分别为 4.0、4.5 和 5.0knot 时, 两者间的网具阻力差值分别为 14.11、14.32 和 14.

16KN 994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www

在网具水平扩张相同的条件下,网具的能耗系数随网身长度变化而变化的趋势基本与网 口垂直扩张的变化趋势相似。如图 5、表 7 所示,能耗系数较小的网具,也是网口垂直扩张较 大的网具。

表 7 网身长度变化对网具阻力和能耗系数的影响

Table 7 The effect of the length of net body on the drag of net and the energy consumption coefficient

网具	Į L _b ∕C	3.5(knot)	4.0(knot)	4. 5(k	not)	5.	0(knot)	5.5(knot)	6.0(knot)	$\overline{\mathbf{R}}$	$\overline{C}e$
编号	5 (%)	R	Ce	R	Ce	R	Ce	R	Сe	R	Ce	R	Ce	(KN)	(J/m^{3})
C_1	15. 554	72.87	40.74	90.10	60.55	108.65	85. 89	128.	45117.42	149. 45	155.80	171.61	201.71	120. 19	110.35
C_2	20. 554	69.46	38.87	85.03	58.38	101.65	83. 59	119.	24115.24	137.76	154.08	157.17	200. 85	111.72	108.50
C_3	25.554	74.58	36.15	90. 79	50.16	107.99	66. 98	126.	12 86. 74	145.14	109.61	164. 99	135.71	118.27	80. 89
C_4	30. 554	75.10	41.45	90.44	59.09	106.55	80. 80	123.	39106.90	140. 89	137.70	159.03	173.50	115.90	99.91
C_5	35.554	83.01	42.17	99.15	58.77	115.96	78.75	133.	40102.32	151.42	129.66	170.01	160.96	125.49	95.44

注: R 单位为 KN; Ce 单位为 J/m³。

- 3 讨论
- 3.1 侧网宽度的选择

拖网模型试验结果表明, 在网口拉直周长不变的条件下, 当 L_f/ L_d 值(侧网与背 (腹) 网横 ◎ 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www

21 卷

向拉直长度之比值) 等于或大于 1 时, 网口垂直扩张和扫海面积随 Lf/La 值变化的规律是 Lf/ La 值越大, 网口垂直扩张和扫海面积越小; 而能耗系数随 Lf/La 值变化的规律是 Lf/La 值越 大, 能耗系数也越大。这是因为四片式拖网的网衣阻力通过侧力纲传导至网袖端, Lf/La 值越 大, 侧力纲越靠近背(腹) 网中部, 通过侧力纲传导的网衣阻力垂直方向的分力越大, 从而导致 网口垂直扩张减小。同时由于在网口拉直周长不变时, 侧网宽度越大, 网具的水平扩张越小。 在网口垂直扩张和网具水平扩张与 Lf/La 值成反比, 而网具阻力变化不大的条件下, 能耗系

网口垂直扩张减小。同时由于在网口拉直周长不变时, 侧网宽度越大, 网具的水平扩张越小。 在网口垂直扩张和网具水平扩张与 L_f/ L_d 值成反比, 而网具阻力变化不大的条件下, 能耗系 数与 L_f/ L_d 值的关系必然是 L_f/ L_d 值越大, 能耗系数也越大。因此, 在设计四片式中层拖网 时, 为保证有较好的网具性能, L_f/ L_d 值必须小于 1。在鱼群垂直分布较小的条件下, L_f/ L_d 值 应选择较小(如 L_f/ L_d 值选择 0.4 左右), 因为当 L_f/ L_d 值小于 1 时, 网具的水平扩张和扫海面 积随 L_f/ L_d 值变化的规律是 L_f/ L_d 值越小, 网具的水平扩张和扫海面积越大。在鱼群垂直分 布较大的条件下, 为保持较大的网口垂直扩张, L_f/ L_d 值的选择范围为 0.7~0.85。

3.2 网袖长度的选择

网袖的主要作用是扩大拖网的扫海面积,威吓、阻拦及引导鱼群进入网身。试验结果表 明, 网袖长度与网口垂直扩张的关系是反比关系, 即网袖长度越短, 网口垂直扩张越大。如在 设计中层拖网时, 为保证在中层拖网作业过程中有较大的网口垂直扩张, 网袖长度选择尽可能 小些, Ls/ La(网袖长度与网具全长之比) 值取值范围为 13% ~ 18% 。由于随着网袖长度的增 长, 网具的水平扩张也随之增大, 尽管网口垂直扩张随之减小, 但试验结果表明, 网袖长度从 30m 增加到 70m 时, 扫海面积随着网袖长度的增大而增大, 因此, 在渔船拖力较大和保证网口 垂直扩张满足设计要求的条件下, Ls/ La 值确定在 31% 左右。这时不但网具扫海面积最佳, 而且能耗系数最小。

3.3 网身长度的选择

拖网网身的作用是引导鱼群进入网囊。王明彦等[1996] 对双船拖网网身长度的研究表明,任何一顶拖网,当网具规模、网口部分的网目尺寸确定之后,其身周比只有在某一比值范围 内时,拖网的水动力性能才能达到最高值。对于大型中层拖网身周比最佳参数的确定,试验结 果表明,当身周比为 25.55%时,网口垂直扩张、扫海面积最大、能耗系数最小、网具性能最佳。

参考文献

- 王明彦, 陈雪忠, 徐宝生. 1996. 双船底拖网渔具设计参数的研究. 水产学报, 20(1): 36~44.
- 三浦汀介,清水晋,西山作藏. 1991. 中层ヌー・ ¦ÀK * 2 k 网と ロールードの运动解析. Nippon Suisan Gakkaishi, 57(1): 57~62.
- 西山作藏等. 1982. 中层メ ー 网の动特性について. Bulletin of the Japanese Society of Scientific Fisheries, 48(8): 1101~ 1105.
- 松田皎, 胡夫祥, 佐藤要. 1991. 中层^ス ー ァ ルの静的特性に关する海上实验. Nippon Suisan Gakkaishi, 57(4): 655 ~ 660.
- 胡夫祥,松田皎,小池笃. 1989. 模型实验による Ä Ó ° 式と 凶 一式の中层ス 一 网の力学的特性の比较. Nippan Suisan Gakkaishi, 55(5): 785~790.

Fujiishi A. 1990. Model tests of a high-speed midwater rope trawl for estimating the optimum buoyancy-weight ratio. Nippon Susan

© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www

Stone M. 1988. Trends in Alaskan Pelagic Traws. Proceedings of the 1988 world symposium on fishing gear and fishing vessel design. Marine institute, st. Johns, newfoundland, Canada. 321~ 325.

Sue Lonnevik M. 1988. Effects of hanging ratios on trawls. Proceedings of the 1988 world symposium on fishing gear and fishing vessel design. Marine institute, st. Johns, newfoundland, Canada. 314~ 317.

Van Marlen B. 1988. A decade of research and development of midwater trawls in the Netherlands. Proceedings of the 1988 world symposium on fishing gear and fishing vessel design. Marineinstitute, st. Johns newfoundland, Canada. 141~ 152.

Wileman D, Rune Yngvesson S O, Harsen K. 1988. Danish midwaten trawl design techniques. Proceedings of the 1988 world symposium on fishing gear and fishing vessel design. Marine institute, st. Johns, newfoundland, Canada 306~ 313.

THE EFFECT OF THE CHANGE OF SIZE OF THE MAIN PARTS OF FOUR PANEL MID WATER TRAWL ON ITS CHARACTERISTICS

CHEN Xue Zhong, YU Yue Feng, LIU Feng, SHI Cheng Jun (East China Sea Fisheries Research Institute, Shanghai 200090)

ABSTRACT The 960.000m × 226.275m (107.800m) mid-water trawl, widely used in China for Alaska pollack fishing in the North Pacific in the 90° s, was selected as the target net in model testing through which to research the effect of the width of side panel as well as the length of wings and body on the performance of four panel mid-water trawls. The results were as follows: (1) With the other conditions unchanged, side panel width has obvious impact on the vertical opening of four-panel trawls. In the towing speed of 3.5 to 5.0 knot net A₂, in which $L_{f}/L_{d}(L_{T})$ the side panel width, L_{t} belly panel width) was 0.714, got the greatest vertical opening. When towing speed increased to 5.5 knot and more, net A₃ with L_f/L_d of 0.846 reached the top value of vertical opening. If the Lf/Ldvalue went to the range above 1.0, the vertical opening decreased with the increase of L_f/L_d . It was found in the model testing that the smaller the side panel width was the greater the sweeping section area would be. (2) At lower towing speed, shorter wings would result in higher vertical opening of net mouth. When trawling speed went above 4.5knot, net B₂ of 17. 678% in L_s/L_a (L_s stretched lenth of wing, L_a stretched lenth of full net) obtained the highest vertical opening value. When L_s/L_a was smaller than 30.936% the sweeping section area increased with extention of wing while in the condition of L_s/L_a above 30.936%, the sweeping area was reversely proportional to the Ls/La value. At all towing speed, drag force increased when wings lengthened. (3) When the L_b/C (L_b -body length, G-stretched circumference of fore part of body) value was 25. 554%, the highest vertical opening of net mouth was reached. The change rate of vertical opening at different speed resulted from the change of body length were directly proportional to the towing speed. As to the changes of energy consumption coefficient for net towing and that of vertical opening with horizontal opening unchanged, the trends were basically the same.

KEYWORDS Mid-water trawl, Vertical opening, Drag, Sweeping area, Model test