研究简报

梭鱼的临界温度和临界氧量*

梭鱼研究组

(中国科学院水生生物研究所)

提 要

本文报道了核鱼的临界温度和临界氧量。临界温度进行了低温和高温致死试验,临界 氣量进行了浮头时和窒息时的溶氧量测定。

把梭鱼(Mugil so-iuy)移殖到中南地区淡水池塘养殖,成活率低,生长缓慢。本文仅就梭鱼生活的临界温度和临界氧量进行了探讨。

材料与方法

试验梭鱼分别来自天津八一农场、江苏东台县养殖场和河北省柏谷庄农场等地。

1. 低温试验和致死高温试验

试验前校鱼鱼种(全长 4.3—6.9 厘米) 先在室内实验容器中 驯 养 24 小 时。低 温 (1—3°C)试验延续 72—96 小时。致死高温试验,每天升温 1°C,直至试验鱼全部死亡为 止。在驯养和实验期间,采用流水养鱼,定时投饵。

2. "浮头"和窒息试验

试验前,梭鱼鱼种(全长4—6厘米)先经室内驯养20天。"浮头"实验:在试验梭鱼开始"浮头",50%个体"浮头"和全部"浮头"时,分别测定水中溶氧量。窒息实验:在试验梭鱼开始出现窒息现象、有50%个体窒息和全部窒息时,分别测定水中溶氧量。以试验鱼停止呼吸为窒息标准。溶氧按Winkler氏法测定。

试 验 结 果

1. 梭鱼的临界温度

(1) 低温试验 低温试验在 12 月进行。试验组与对照组各饲养 10 尾鱼种。对照组

^{*} 本文由单仕新、戴庆年同志执笔。

(水温 6—7°C)经过 94 小时 30 分钟饲养, 死亡 1 尾, 成活率 90%。试验组 I (水温 3—1°C)经过 72 小时饲养(其中 17 小时为 3°C,50 小时 30 分为 2°C,4 小时 30 分为 1°C),成活率 100%。试验组 II(水温 1°C)经 92 小时饲养,死亡 2 尾(分别在 27 和 39 小时死亡),成活率 80%。在 1°C低温条件下,梭鱼活动正常,仍有吃食行为。由此可见,1°C水温处在梭鱼温度忍受区下限以内,武昌地区冬季水温一般在 1°C以上,因此不会危及梭鱼的 生活。

(2) 致死高温试验 致死高温试验分别在 8 月和 10 月进行。在 8 月,当水温从33°C 逐日升温 1°C至 37°C时,梭鱼食欲明显减退,甚至停止吃食;当水温升到 39°C时,试验鱼经过 41—45 小时全部死亡。当时试验组 I 和 II 的溶氧量分别为 2.99—3.57 毫克/升和 1.74—3.74 毫克/升。在 10 月,当水温从 25°C逐日升温 1°C至 35°C时,未见梭鱼有明显的异常情况;当水温升到 36°C时,核鱼食欲明显减退,甚至停食;当水温继续升高到 37°C,经 22 小时 50 分钟,有 44%试验鱼死亡。当时水中溶氧量为 5.92 毫克/升。试验表明梭鱼的致死高温和初始致死高温,在 8 月份是 39°C和 36°C,在 10 月份是 37°C和 36°C。上述试验属急性试验,梭鱼实际临界致死高温将低于 36°C。由此推论,梭鱼的温度忍受上

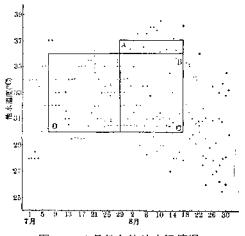


图 1 7、8 月份鱼池的水温情况 (池水表层和底层的日最高及最低温度 与梭鱼临界高温的联系)

限可能是 35°C。

为了探讨 8 月份池水高温对于池养梭鱼的影响,我们于 1973—1975 年 7—8 月间,测定了六个鱼池池水表层和底层的日最高和日最低温度,结果见图 1。从图 1 可以看出在 AC 方块的上方,有 8 个日次的池水表层水温超过 37°C,最高可达 38.5°C,这种高温情况每年可能会在 20 天(7月29日—8月 17 日)的时间内随机发生。在图 1 BD-方块上方,有18 个日次的池水表层水温超过 36°C,这种高温情况,每年可能会在 42 天(7 月 7 日—8 月17 日)的时间内随机发生。还可看到代表 30°C水温的 CD 线,基本上代表了这段时期内大部分日次的池水底层温度情况。因此,生

活在武昌地区的池养梭鱼,每年夏季有近一个半月时间处于十分不利的高温环境下,池水上层水温有 43%的日次达到梭鱼的致死高温,而池水下层又经常处在 30°C水温以上。

2. 梭鱼的临界氯量

(1) 核鱼"浮头"时的溶氧量 7月3日至8月6日我们观测了四个鱼池的梭鱼活动情况和当时的池水溶氧量 (分别在上午3时40分—8时30分和下午3—4时观察和测定),当池水中层(水面下0.6米处)溶氧量在2.7毫克/升以上,梭鱼一般不到池水上层活动;当溶氧量降至2.7毫克/升以下,则有少数大梭鱼鱼种(全长30厘米左右)至池水上层游动;当溶氧量降至2.5—2.4毫克/升以下,有较多的大梭鱼鱼种在池水上层游动;溶氧量降至2毫克/升以下,则小梭鱼鱼种(全长11.3厘米以下)也大批到池水上层游动。如

果溶氧量继续下降至 1.2 毫克/升以下,则全部梭鱼呈现"浮头"状态。这现象与室内梭鱼"浮头"试验结果相符。室内"浮头"试验表明,水中溶氧量降至 1.18 毫克/升,梭鱼开始"浮头",溶氧量降至 1.06—1.16 毫克/升,50%梭鱼"浮头",溶氧量降至 0.9 毫克/升,全部梭鱼"浮头",这时鱼的呼吸频率增加,游动渐渐缓慢,如果溶氧继续下降,则鱼体失去平衡,侧卧或仰卧,最后失去游动能力,慢慢下沉,进入窒息状态而死亡。

(2) 核鱼窒息时溶氧量 梭鱼的窒息试验,分别在天然水温和每天增温 1°C至 37°C 水温,这两种温度条件下进行。当水温在 25—28°C,梭鱼开始窒息时的溶氧量为 0.5—

0.52 毫克/升, 梭鱼半数窒息的溶氧量(50% 鱼死亡) 为 0.42—0.45 毫克/升。当水温在 37°C时,半数窒息溶氧量为 0.93—0.97 毫克 /升, 较 25—28°C水温时提高了 1 倍。

如果把上述实验数据综合绘成图 2, 可以粗略显示池水溶氧条件对于梭鱼生活的影响情况。图 2 左边是下午 3—4 时的测定数据,可反映池水每天的高溶氧状态,图 2 右边是上午 3 时 40 分—8时 30 分的测定数据,可反映池水每天的低溶氧状态。图 2 右表示有43%的测值处于在 A 线以下,有 35%的测值处在 C 线以下,有 6%的测值处在 D 线以下,有 1%的测值所近 F 线,也就是说,武昌地区夏季(7—8月),约有 22—43%日次的夜间,因池水缺氧而迫使梭鱼游至池水上层活动,有 6% 日次的夜间,追使梭鱼处于"浮头"状态,有 1%日次的

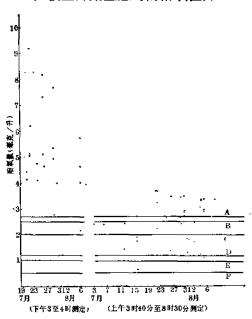


图 2 池水中层(水面下 2 市尺)的溶氧量及 其与梭鱼活动情况的联系

夜间迫使梭鱼临近常温窒息氧量。值得注意的是图 2 左边的溶氧测值,表明在白天下午 3—4 时池水溶氧量也可以出现低氧状态,如有一个测值已近 A 线,有一个测值在 B 线以下。这种白昼高温低氧情况,在日落以后,因池水溶氧量很快下降,有可能迫使梭鱼进入高温窒息处境。因此,可以认为武昌地区夏季池水的高温和低氧条件,可能是造成池养梭鱼成活率低和生长缓慢的原因。

ON THE CRITICAL TEMPERATURE AND THE CRITICAL OXYGEN FOR MULLET (MUGIL SO-IUY) FINGERLINGS

Section of Mullet Studies, Institute of Hydrobiology, Acadamia Sinica

Abstract

Asphyxiation point and lethal temperature for the fingerlings of mullet were experimentally dertermined. It was found that the lethal high temperature for the fingerlings of mullet was 36°C and the range of tolerance may be started from 1°C. While the dissolved oxygen droped to 1.18—0.9mg per liter, the fingerlings come up to the water surface, and at 0.7—0.93mg per liter (at 37°C) or 0.52—0.42mg per liter (at 25—28°C), the fingerlings died in asphyxia.