水产学报  2019, Vol. 43 Issue (4): 790-800    DOI: 10.11964/jfc.20180111167.   PDF    
长江下游雌性刀鲚生殖洄游过程中脂肪酸含量及其组分的变化
李丽1,2 , 唐文乔1,2,3 , 张亚1,2     
1. 上海海洋大学,海洋动物系统分类与进化上海高校重点实验室,上海    201306;
2. 上海海洋大学,水产科学国家级实验教学示范中心,上海    201306;
3. 上海海洋大学,水产种质资源发掘与利用教育部重点实验室,上海    201306
摘要:为阐明长江刀鲚体内脂肪酸在生殖洄游过程中的转化规律,本研究采用三氟化硼甲酯化法对采自长江下游不同发育时期(Ⅲ~Ⅴ期)的雌性刀鲚洄游群体的脂肪酸进行测定,对各类脂肪酸在卵巢、肌肉和肝胰腺的组成及其含量变化作了分析。结果显示,雌性刀鲚从Ⅲ期发育至Ⅴ期,卵巢总脂肪酸含量上升了148.89 mg/g,而肌肉和肝胰腺总脂肪酸含量则分别下降了109.57和160.58 mg/g。不同发育时期,卵巢、肌肉和肝胰腺的脂肪酸组成基本相同,均含有3大类24种脂肪酸,其中饱和脂肪酸(SFA)9种、单不饱和脂肪酸(MUFA)6种和多不饱和脂肪酸(PUFA)9种。所有脂肪酸中,以油酸(C18:1n9c)的含量最高,占各组织脂肪酸总量的18%以上。分析发现,在Ⅲ期至Ⅴ期发育过程中,雌性刀鲚肌肉中的C18:1n9c下降了86.36%,卵巢中则增加了2.62倍;必需脂肪酸C18:2n6和C18:3n3在肌肉中分别下降了74.00%和82.26%,但在卵巢中分别增加了225.87%和183.96%;肌肉中DHA (C22:6n3, 二十二碳六烯酸)含量减少了2.6倍,而卵巢中却增加了近3倍,表明这些脂肪酸与繁殖活动的关系很密切。研究还发现,Ⅳ期和Ⅴ期卵巢中ARA (C20:4n6, 花生四烯酸)/EPA (C20:5n3, 二十碳五烯酸)的比值均小于0.46,可能预示着长江刀鲚有较好的卵子质量。
关键词刀鲚    脂肪酸    卵巢    肌肉    肝胰腺    

刀鲚(Coilia nasus)隶属于鲱形目(Clupeiformes)、鳀科(Engraulidae),具有洄游型和定居型两种生态型,二者在生活习性上的区别在于是否进行生殖洄游[1-2]。定居型刀鲚在淡水中完成整个生活史,常见于长江中下游及其附属的鄱阳湖、太湖、巢湖等水域[3]。洄游型刀鲚享有“长江三鲜”之首的美誉,是长江口重要的经济鱼类之一。平时栖息于近海,春季繁殖群体溯河进入河流的中、下游产卵,孵化后的幼鱼及亲鱼随江水返回近海索饵越冬,其产卵场大多在距长江口600 km以上的安徽及江西江段,甚至可上溯至洞庭湖一带,是一种中长距离溯河产卵的洄游鱼类[24-5],但在生殖洄游过程中并不摄食[6-7]

生殖洄游是一个高耗能的过程,对洄游过程中不摄食的鱼体来说,前期的能量储备对顺利完成产卵过程有着极为重要的作用[8-9]。若体内能量储备不足,将有可能因无法到达产卵场而导致产卵失败[10-11]。脂肪是鱼体最重要的营养物质之一, 也是维持生命活动的主要能源物质[12-13]。脂肪中的脂肪酸会随着亲鱼的性腺发育而转移到卵中,并在很大程度上决定着卵子的数量和质量[1214-16]。长江刀鲚的种质开发和资源保育一直是当前学者们关注的热点课题[17],目前已在种质资源[217]、形态特征[18-19]、生物学特性[20-21]、遗传特征[22-23]、人工繁殖[524-25]、营养成分[26-27]等方面积累了大量的科研成果,但对生殖洄游过程中不同组织的脂肪酸组成及其含量变化状况还未涉及。本研究在初步了解不同发育时期卵巢、肌肉和肝胰腺组织中粗脂肪含量变化的基础上[28],进一步分析脂肪酸的组成及其变化,旨在阐明长江刀鲚在生殖洄游过程中各类脂肪酸在体内的转化规律,为这一珍贵物种的种质资源开发和保育提供基础资料。

1 材料与方法 1.1 样本采集

所分析的样本采自长江下游的江苏靖江段(31°96′N,120°11′E)(图1,S1),跟随2艘持有刀鲚捕捞证的渔船,采用流刺网于2017年4月初采集。将所有样本打上标签,经冰鲜保存后带回实验室,保存于–80 °C冰箱中待用。

图 1 刀鲚样本的采集地点 Fig. 1 Sampling site of C. nasus
1.2 实验方法 样本处理

样本于–4 °C解冻后,用吸水纸擦去体表残留的水分,测量体长和体质量,并进行卵巢发育的形态学和组织学分期。随机挑选Ⅲ、Ⅳ、Ⅴ期各9尾雌性样本,平均体长和体质量分别为(32.56±1.28) cm、(30.39±0.83) cm、(30.24±0.77) cm和(145.49±20.77) g、(118.06±4.15) g、(124.69±5.11) g,并建立不同性腺发育时期的体长、体质量关系图(图2)。将每一发育时期的9尾样本分为3组,每组3尾,解剖取出卵巢、肝胰腺和部分背部肌肉。将每组样本的卵巢、肝胰腺和背部肌肉分别剪碎并混合均匀,冷冻干燥(–105 °C,真空度<12 Pa)24 h后,用于脂肪抽提和脂肪酸的测定。

图 2 不同性腺发育时期雌性刀鲚的体长和体质量 Fig. 2 Body length and body weight of female C. nasus in Yangtze River at different reproduction stages during spawning migration processes
组织脂肪抽提

精确称量(精确到0.01 g)已混合的干燥卵巢0.40 g、肝胰腺0.50 g和背部肌肉2.00 g,采用“氯仿—甲醇(VV=2∶1)”法抽提各组织中的总脂肪[29],经40 °C真空干燥箱干燥6 h后,称量脂肪质量并计算各组织的脂肪含量。

脂肪酸测定

采用三氟化硼甲酯化法,即用正己烷将脂肪溶解并稀释至0.001 g/mL,加入1 mL未甲酯化的C19内标,真空干燥3 h;加入2 mL 14%三氟化硼甲醇溶液,100 °C水浴25 min;随后加入2 mL苯溶液和2 mL甲醇溶液,100 °C水浴25 min;再加蒸馏水和正己烷,振荡混匀后3 000 r/min离心5~10 min,取上清液,进行气相色谱分析。各脂肪酸的定性采用与标准脂肪酸保留时间相比较的方法, 脂肪酸的定量采用面积归一化法。

1.3 数据处理

所有数据均用Excel 2010和SPSS 20.0处理,用平均值±标准差(mean±SD)表示,组间差异比较采用单因素方差分析(One-Way ANOVA)和Duncan氏多重比较。

2 结果 2.1 卵巢发育过程中各组织总脂肪酸含量的变化

所分析的27尾雌性刀鲚体长和体质量分别为28.50~34.00 cm和109.21~168.80 g,卵巢发育Ⅲ、Ⅳ、Ⅴ期的体长和体质量分别为(32.56±1.28) cm、(30.39±0.83) cm、(30.24±0.77) cm和(145.49±20.77) g、(118.06±4.15) g、(124.69±5.11) g。对卵巢发育Ⅲ、Ⅳ和Ⅴ期的刀鲚样本研究发现,Ⅲ期样本的体长和体质量均显著大于Ⅳ期和Ⅴ期(P<0.05),而Ⅳ和Ⅴ期样本之间的体长和体质量差异不显著(P>0.05)。可见,刚开始启动洄游的雌性个体具有较大的平均体型,随着性腺的逐渐发育,大个体雌性更易被渔业捕获(图2)。

分析显示,性腺发育过程中,刀鲚各组织的总脂肪酸含量均发生了显著的变化(表1)。肌肉的总脂肪酸含量从Ⅲ期的135.34 mg/g显著下降至Ⅴ期的25.774 mg/g(P>0.05),其中Ⅲ期至Ⅳ期减少了74.90%,Ⅳ期至Ⅴ期减少了24.13%。肝胰腺总脂肪酸含量从211.87 mg/g下降至51.29 mg/g,其中Ⅲ期至Ⅳ期减少了61.17%,Ⅳ期至Ⅴ期减少了37.65%。与肌肉和肝胰腺相反,卵巢的总脂肪酸含量从104.43 mg/g增加至253.31 mg/g,其中Ⅲ期至Ⅳ期增加了127.42%,Ⅳ期至Ⅴ期增加了6.66%。可见,肌肉和肝胰腺的总脂肪酸含量均在Ⅲ期发育至Ⅳ期的过程中大幅度减少,而卵巢的总脂肪酸含量则在Ⅲ期发育至Ⅳ期的过程中大幅度增加。

表 1 长江雌性刀鲚性腺发育过程中不同组织的总脂肪酸含量及其变化 Tab.1 Total fatty acid contents and fluctuation in different tissues of female C. nasus inYangtze River at different reproduction stages
2.2 卵巢发育过程中各类器官脂肪酸含量的变化 肌肉

随着肌肉总脂肪酸含量的下降,各类脂肪酸组分的含量也随之下降(图3表2)。在Ⅲ期至Ⅳ期、Ⅳ期至Ⅴ期的发育过程中,饱和脂肪酸(SFA)含量分别下降了26.86和1.21 mg/g,单不饱和脂肪酸(MUFA)含量分别下降了61.18和4.74 mg/g,多不饱和脂肪酸(PUFA)含量分别下降了13.33和2.25 mg/g。可见,上述三类脂肪酸的含量均在Ⅲ期至Ⅳ期的发育过程中大幅度下降,特别是MUFA的含量。

图 3 长江雌性刀鲚性腺发育过程中肌肉脂肪酸含量的变化 Fig. 3 Fatty acid contents in the muscle of femaleC. nasus in Yangtze River at differentreproduction stages

表 2 卵巢发育过程中长江雌性刀鲚肌肉脂肪酸含量的变化 Tab.2 Fatty acid contents in the muscle of femaleC. nasus in Yangtze River at different reproduction stages
肝胰腺

肝胰腺的各类脂肪酸组分含量也与肌肉有类似的变化趋势(图4表3),Ⅲ期至Ⅳ期和Ⅳ期至Ⅴ期的发育过程中,SFA含量分别下降了20.88和15.77 mg/g,MUFA含量分别下降了97.30和7.96 mg/g,PUFA含量分别下降了11.43和7.24 mg/g。由此可见,上述三类脂肪酸的含量虽然总体上呈下降趋势,但自Ⅲ期至Ⅴ期的发育过程中,SFA和PUFA含量下降相对平缓,MUFA含量前期下降更为剧烈。

表 3 卵巢发育过程中长江雌性刀鲚肝胰腺脂肪酸含量的变化 Tab.3 Fatty acid contents in the hepatopancreas of female C. nasus in Yangtze River at different reproduction stages

图 4 长江雌性刀鲚性腺发育过程中肝胰腺脂肪酸含量的变化 Fig. 4 Fatty acid contents in the hepatopancreas of female C. nasus in Yangtze River at different reproduction stages
卵巢

随着卵巢总脂肪酸含量的增加,各类脂肪酸组分也出现变化(图5表4)。SFA含量自Ⅲ期至Ⅳ期增加了16.27 mg/g,但自Ⅳ期至Ⅴ期反而下降了3.60 mg/g。MUFA含量自Ⅲ期至Ⅳ期增加了79.32 mg/g,Ⅳ期至Ⅴ期增加了20.09 mg/g。PUFA含量自Ⅲ期至Ⅳ期增加了37.47 mg/g,但Ⅳ期至Ⅴ期也下降了0.67 mg/g。可见,这三类脂肪酸的含量均在Ⅲ期至Ⅳ期的发育过程中较大幅度地增加,但SFA和PUFA含量在Ⅳ期至Ⅴ期的发育过程中则反而有所下降。

图 5 长江雌性刀鲚性腺发育过程中卵巢脂肪酸含量变化 Fig. 5 Fatty acid contents in the ovary of femaleC. nasus in Yangtze River at differentreproduction stages

表 4 卵巢发育过程中长江刀鲚卵巢脂肪酸含量的变化 Tab.4 Fatty acid contents in the ovary of femaleC. nasus in Yangtze River at different reproduction stages
2.3 性腺发育过程中脂肪酸组分的变化 肌肉

3个发育时期,在肌肉中共检测出24种脂肪酸(表5)。其中9种SFA的含量为7.12~35.20 mg/g,含量较高的有C16:0和C18:0。6种MUFA的含量为10.49~76.40 mg/g,含量较高的有C18:1n9c (油酸)和C16:1。9种PUFA的含量为8.15~23.73 mg/g,含量较高的有C20:4n6(ARA)、C20:5n3(EPA)和C22:6n3(DHA)。

表 5 不同卵巢发育时期长江雌性刀鲚肌肉脂肪酸含量(干重) Tab.5 Fatty acid contents in the muscle offemaleC. nasus in Yangtze River at stages of ovarian development (dry, n=3)

上述7种较高含量的脂肪酸均在Ⅲ期含量最高,至Ⅳ期的发育过程中含量均出现显著下降(P<0.05);但在Ⅳ期至Ⅴ期的发育过程中仅C16:1和油酸的含量出现显著下降(P<0.05),而C18:0、C16:0、ARA、EPA和DHA的含量并无明显的改变(P>0.05)。

肝胰腺

肝胰腺中也检测出24种脂肪酸(表6),其中9种SFA含量为15.23~51.88 mg/g,含量较高的有C16:0和C18:0;6种MUFA含量为17.40~122.66 mg/g,含量较高的有油酸和C16:1;9种PUFA含量为18.65~37.31 mg/g,含量较高的有ARA、EPA和DHA。这7种较高含量的脂肪酸在Ⅲ期含量达到最高,其中C16:0、C16:1、油酸、EPA和DHA的含量自Ⅲ期发育至Ⅴ期均出现显著下降(P<0.05),而C18:0和ARA的含量在Ⅲ期至Ⅳ期的发育过程中无显著改变(P>0.05),但在Ⅳ期至Ⅴ期的发育过程中显著下降(P<0.05)。

表 6 不同卵巢发育时期长江雌性刀鲚肝胰腺脂肪酸含量(干重) Tab.6 Fatty acid contents in the hepatopancreas of femaleC. nasus in Yangtze River at stages of ovarian development (dry, n=3)
卵巢

卵巢中同样也检测出24种脂肪酸(表7)。9种SFA的含量为26.58~42.85 mg/g,其中含量较高的C16:0和C18:0分别在Ⅲ期和Ⅳ期达到最高;6种MUFA的含量为53.56~152.97 mg/g,含量较高的油酸和C16:1均在Ⅴ期达到最高;9种PUFA的含量为24.28~61.75 mg/g,含量较高的ARA、EPA和DHA均在Ⅳ期达到最高。

表 7 不同卵巢发育时期长江雌性刀鲚卵巢脂肪酸含量(干重,n=3) Tab.7 Fatty acid contents in the ovary offemaleC. nasus in Yangtze River at stages of ovarian development (dry, n=3)

分析显示,卵巢中7种含量较高的脂肪酸与肌肉和肝胰脏的变化趋势明显不同。C16:1、油酸和DHA的含量自Ⅲ期发育至Ⅴ期显著增加(P<0.05),其中油酸的含量增加了2.62倍,DHA的含量增加了2.48倍;ARA的含量在Ⅲ期至Ⅳ期的发育过程中增加了1.97倍,但在Ⅳ期至Ⅴ期的发育过程中略有减少;EPA的含量在Ⅲ期至Ⅳ期的发育过程中增加了2.44倍,但在Ⅳ期至Ⅴ期的发育过程中基本不变。

3 讨论 3.1 卵巢发育过程中刀鲚体内脂肪酸的总体转移

脂肪及其组成成分脂肪酸,是维持鱼类生命活动的主要能源物质[12-13]。肌肉、内脏周围等都是鱼类脂肪的重要存储部位,但不同的物种及其生理阶段却有差异[30-31]。研究显示,大西洋鲑(Salmo salar)溯河生殖洄游前,内脏周围和肌肉是主要的脂肪储存库[32-33];而溯河生殖洄游前的刀鲚,肌肉是主要的脂肪储存组织[28];日本鳗鲡(Anguilla japonica)降海生殖洄游前,其脂肪也主要积存在肌肉[34]

由于距离长、水环境变化剧烈等原因,过河口性鱼类的生殖洄游需要调动各类脂肪以提供生殖洄游和性腺发育所需的能量,特别是生殖洄游过程中不摄食的鱼类。大西洋鲑溯河生殖洄游过程中,肌肉脂肪含量从12.1%下降至2.1%,除性腺以外的内脏脂肪含量从7.3%下降至1.6%[35]。日本鳗鲡在降海生殖洄游过程中,肌肉总脂肪的9.8%为运动供能,32.5%用于性腺发育[34]。刀鲚生殖洄游过程中,肌肉脂肪含量从10.6%下降至9.1%,肝胰腺脂肪含量从19.1%下降至15.6%[28];且肌肉脂肪酸含量从Ⅱ期的559.05 mg/g下降至Ⅴ期的247.53 mg/g,下降率达到55.72% [27]。本研究也得到相似的结果,刀鲚性腺自Ⅲ期发育至Ⅴ期的过程中,肌肉和肝胰腺的总脂肪酸含量分别下降了80.96%和75.79%,而卵巢脂肪酸含量则增加了142.27%。可见,刀鲚体内的脂肪酸与总脂肪一样,在生殖洄游过程中也发生了显著的转移。

3.2 卵巢发育过程中肌肉脂肪酸的分解与合成

现有证据表明,鱼类所有的SFA和MUFA均可参与线粒体的β-氧化[36],但只有部分PUFA参与线粒体的β-氧化过程[37]。研究显示,欧洲鳗鲡(A. anguilla)生殖洄游过程中,肌肉中的MUFA和SFA会优先被β-氧化[38],在Ⅱ期发育至Ⅴ期的过程中,刀鲚肌肉中SFA、MUFA和PUFA含量分别下降了104.78、147.73和59.01 mg/g[27]。本研究同样发现,刀鲚性腺自Ⅲ期发育至Ⅴ期的过程中,肌肉中SFA、MUFA和PUFA的含量分别下降了79.74%、86.27%和65.63%。可见,刀鲚生殖洄游过程中,肌肉中MUFA和SFA的消耗程度要大于PUFA。

鱼类脂肪酸的生物合成过程保守,主要器官为肝胰腺[39]。乙酰-CoA羧化酶(ACC)先将线粒体中产生的部分乙酰-CoA活化为丙二酰-CoA,丙二酰-CoA再在细胞质中与乙酰-CoA多次缩合,产生C16:0和C18:0[12]。在多种酶的作用下,C16:0和C18:0可以去饱和后生成C16:1和油酸。油酸可以进一步通过Δ12和Δ15去饱和酶形成C18:2n6和C18:3n3,进而形成具有重要生理功能的20碳和22碳PUFA,如ARA、EPA和DHA等[12]。本研究结果显示,刀鲚卵巢自Ⅲ期发育至Ⅴ期,卵巢中ARA、EPA和DHA含量分别增加了49.73%、137.01%和187.71%,因此推测在生殖洄游过程中,刀鲚在卵巢中积累了大量的二十碳和二十二碳PUFA,具体生理功能还有待进一步的研究。

但由于缺乏Δ12和Δ15去饱和酶,C18:2n6和C18:3n3只能从食物中获得,因此是鱼类的必需脂肪酸[12]。本研究发现,刀鲚性腺自Ⅲ期发育至Ⅴ期,肌肉中C18:2n6和C18:3n3的含量分别减少了74.00%和82.26%。但卵巢中上述2种脂肪酸的含量分别增加了225.87%和183.96%。可见在生殖洄游过程中,刀鲚将体内极大部分的必需脂肪酸都转移到了性腺,但其生理功能还有待于进一步研究。

3.3 几种重要脂肪酸与卵巢发育的关系

鱼类肌肉的脂肪酸组成中,油酸含量丰富且可能与性腺发育、基础代谢和运动有密切关系[40]。已有研究发现,大西洋鲑的游泳速度与肌肉中油酸的含量呈正相关[41];虽然日本鳗鲡肌肉中油酸的含量与运动无关,但与卵巢发育和基础代谢关系密切[34]。本研究显示,刀鲚肌肉中MUFA含量最高的是油酸,但在性腺自Ⅲ期至Ⅴ期发育过程中消耗了86.36%,与卵巢发育明显相关,也可能为生殖洄游提供了能量。

PUFA的许多组分都与鱼类繁殖活动有关,尤其是ARA、EPA和DHA。ARA是卵巢中类花生酸类物质的重要前体,可参与调控排卵[42]。而类花生酸类物质的合成又受到EPA的调控,因此,ARA与EPA的比值对卵子质量、排卵和胚胎发育具有重要影响[43]。研究发现,当日本鳗鲡卵巢中ARA/EPA大于0.7时,卵子质量较低;该比值小于0.46时,卵子质量则较高[44]。本研究发现,刀鲚卵巢自Ⅲ期发育至Ⅴ期,组织中ARA/EPA分别为0.47、0.38、0.27。由于Ⅳ期和Ⅴ期的ARA/EPA均小于0.46,这可能预示着长江刀鲚的IV期和V期的卵质量较好,可作人工繁殖;而IV期的卵质量较差,难以作人工繁殖利用。

DHA含量对鱼类的生殖影响极大,含有高DHA浓度的卵具有较高的受精率、孵化率和仔鱼成活率[45]。但日本鳗鲡肌肉中的DHA含量与性体指数(GSI)呈负相关,相关曲线为y=13.359e-0.058 4x(r=–0.952,P<0.01, n=5)[34]。本研究发现,刀鲚性腺自Ⅲ期发育至Ⅴ期,肌肉中的DHA含量减少了2.6倍,而卵巢中的DHA含量却增加了近3倍。刀鲚性腺发育过程中这种肌肉DHA含量的明显下降,与性体指数的增加趋势刚好相反[25-6];而卵巢中DHA含量的增加,可能预示着目前长江口雌性刀鲚的卵子质量较好。

参考文献
[1] 唐文乔, 胡雪莲, 杨金权. 从线粒体控制区全序列变异看短颌鲚和湖鲚的物种有效性[J]. 生物多样性, 2007, 15(3): 224-231
Tang W Q, Hu X L, Yang J Q. Species validities of Coilia brachygnathus and C. nasus taihuensis based on sequence variations of complete mtDNA control region [J]. Biodiversity Science, 2007, 15(3): 224-231 DOI: 10.3321/j.issn:1005-0094.2007.03.002 (0)
[2] Xu P, Xu G C, Liu K, et al. The germplasm resources and artificial regeneration techniques of Coilia nasus in the Yangtze River[M]. Beijing: Science Press, 2016: 21-38(in Chinese). (0)
[3] 袁传宓, 秦安舲. 我国近海鲚鱼生态习性及其产量变动状况[J]. 海洋科学, 1984, 8(5): 35-37
Yuan C M, Qin A L. Ecological habits and distribution of Coilia along the Chinese coast and its changes of output [J]. Marine Science, 1984, 8(5): 35-37 (0)
[4] 袁传宓, 秦安舲, 刘仁华, 等. 关于长江中下游及东南沿海各省的鲚属鱼类种下分类的探讨[J]. 南京大学学报(自然科学版), 1980(3): 67-82
Yuan C M, Qin A L, Liu R H, et al. On the classification of the anchovies, Coilia, from the lower Yangtze River and the Soutiieast coast of China [J]. Journal of Nanjing University (Natural Science Edition), 1980(3): 67-82 (0)
[5] 朱栋良. 长江刀鱼的天然繁殖与胚胎发育观察[J]. 水产科技情报, 1992, 19(2): 49-51
Zhu D L. Observation of natural reproduction and embryonic development of Coilia ectenes Jordan et Scale [J]. Fisheries Science & Technology Information, 1992, 19(2): 49-51 (0)
[6] 袁传宓. 刀鲚的生殖洄游[J]. 生物学通报, 1987(12): 1-3
Yuan C M. The reproductive migration of Coilia ectenes Jordan et Seale [J]. Bulletin of Biology, 1987(12): 1-3 (0)
[7] 管卫兵, 陈辉辉. 长江口刀鲚洄游群体和越冬群体能量利用方式[J]. 海洋湖沼通报, 2014(4): 35-40
Guan W B, Chen H H. Energy dynamics in anadromous C. ectens during spawning and overwintering in Yangtze estuary [J]. Transactions of Oceanology and Limnology, 2014(4): 35-40 (0)
[8] Henderson B A, Morgan G E. Maturation of walleye by age, size and surplus energy[J]. Journal of Fish Biology, 2002, 61(4): 999-1011 DOI: 10.1111/jfb.2002.61.issue-4 (0)
[9] 罗毅平. 鱼类洄游中的能量变化研究进展[J]. 水产科学, 2012, 31(6): 375-381
Luo Y P. Research advances in energetic changes during fish migration: a review[J]. Fisheries Science, 2012, 31(6): 375-381 DOI: 10.3969/j.issn.1003-1111.2012.06.014 (0)
[10] Mourente G, Megina C, Díaz-Salvago E. Lipids in female northern bluefin tuna (Thunnus thynnus L. ) during sexual maturation [J]. Fish Physiology and Biochemistry, 2001, 24: 351-363 DOI: 10.1023/A:1015011609017 (0)
[11] Zaboukas N, Miliou H, Megalofonou P, et al. Biochemical composition of the Atlantic bonito Sarda sarda from the Aegean Sea (eastern Mediterranean Sea) in different stages of sexual maturity [J]. Journal of Fish Biology, 2006, 69(2): 347-362 DOI: 10.1111/jfb.2006.69.issue-2 (0)
[12] Tocher D R. Metabolism and functions of lipids and fatty acids in teleost fish[J]. Reviews in Fisheries Science, 2003, 11(2): 107-184 DOI: 10.1080/713610925 (0)
[13] Shapawi R, Ebi I, Yong A S K, et al. Optimizing the growth performance of brown-marbled grouper, Epinephelus fuscoguttatus (Forskal), by varying the proportion of dietary protein and lipid levels [J]. Animal Feed Science and Technology, 2014, 191: 98-105 DOI: 10.1016/j.anifeedsci.2014.01.020 (0)
[14] Sargent J, Bell G, Mcevoy L, et al. Recent developments in the essential fatty acid nutrition of fish[J]. Aquaculture, 1999, 177(1-4): 191-199 DOI: 10.1016/S0044-8486(99)00083-6 (0)
[15] Izquierdo M S, Fernández-Palacios H, Tacon A G J. Effect of broodstock nutrition on reproductive performance of fish[J]. Aquaculture, 2001, 197(1-4): 25-42 DOI: 10.1016/S0044-8486(01)00581-6 (0)
[16] 许友卿, 李伟峰, 丁兆坤. 多不饱和脂肪酸对鱼类免疫与成活的影响及机理[J]. 动物营养学报, 2010, 22(3): 551-556
Xu Y Q, Li W F, Ding Z K. Effects of polyunsaturated fatty acids on immunity and survival of fish and their mechanisms[J]. Chinese Journal of Animal Nutrition, 2010, 22(3): 551-556 DOI: 10.3969/j.issn.1006-267x.2010.03.006 (0)
[17] Tang W Q. Study on genetic diversity and resource ecology of Coilia nasus in the Yangtze River[M]. Beijing: Science Press, 2016: 14-62(in Chinese). (0)
[18] 程起群, 李思发. 刀鲚和湖鲚种群的形态判别[J]. 海洋科学, 2004, 28(11): 39-43
Cheng Q Q, Li S F. Morphological discrimination between two populations of Coilia ectenes [J]. Marine Sciences, 2004, 28(11): 39-43 DOI: 10.3969/j.issn.1000-3096.2004.11.009 (0)
[19] 王丹婷, 杨健, 姜涛, 等. 不同水域刀鲚形态的分析比较[J]. 水产学报, 2012, 36(1): 78-90
Wang D T, Yang J, Jiang T, et al. A comparative study of the morphology of different geographical populations of Coilia nasus [J]. Journal of Fisheries of China, 2012, 36(1): 78-90 (0)
[20] 郭弘艺, 唐文乔. 长江口刀鲚矢耳石重量与年龄的关系及其在年龄鉴定中的作用[J]. 水产学报, 2006, 30(3): 347-352
Guo H Y, Tang W Q. The relationship between sagittal otolith weight-age and its use in age determination in Coilia nasus from the estuary of Yangtze River [J]. Journal of Fisheries of China, 2006, 30(3): 347-352 (0)
[21] 董文霞, 唐文乔, 王磊. 长江刀鲚繁殖群体的生长特性[J]. 上海海洋大学学报, 2014, 23(5): 669-674
Dong W X, Tang W Q, Wang L. Growth characteristics of reproductive population of Coilia nasus in the Yangtze River [J]. Journal of Shanghai Ocean University, 2014, 23(5): 669-674 (0)
[22] 刘东, 李盈盈, 唐文乔, 等. 刀鲚类Tc1转座子的分子特征及拷贝数变化的意义[J]. 水产学报, 2016, 40(2): 156-163
Liu D, Li Y Y, Tang W Q, et al. Molecular characters of Tc1-like transposon isolated from Coilia nasus and implication of the copy number variation [J]. Journal of Fisheries of China, 2016, 40(2): 156-163 (0)
[23] 杨金权, 胡雪莲, 唐文乔, 等. 长江口邻近水域刀鲚的线粒体控制区序列变异与遗传多样性[J]. 动物学杂志, 2008, 43(1): 8-15
Yang J Q, Hu X L, Tang W Q, et al. mtDNA control region sequence variation and genetic diversity of Coilia nasus in Yangtze River estuary and its adjacent waters [J]. Chinese Journal of Zoology, 2008, 43(1): 8-15 DOI: 10.3969/j.issn.0250-3263.2008.01.002 (0)
[24] Xu G C, Tang X, Zhang C X, et al. First studies of embryonic and larval development of Coilia nasus (Engraulidae) under controlled conditions [J]. Aquaculture Research, 2011, 42(4): 593-601 DOI: 10.1111/are.2011.42.issue-4 (0)
[25] 施永海, 张根玉, 张海明, 等. 刀鲚的全人工繁殖及胚胎发育[J]. 上海海洋大学学报, 2015, 24(1): 36-43
Shi Y H, Zhang G Y, Zhang H M, et al. Complete artificial propagation and embryonic development of Coilia nasus [J]. Journal of Shanghai Ocean University, 2015, 24(1): 36-43 (0)
[26] 李玉琪, 陶宁萍. 刀鲚营养价值研究现状及进展[J]. 食品工业, 2014, 35(1): 223-227
Li Y Q, Tao N P. Present status and progress of evaluation on nutritional composition of Coilia ectenes [J]. The Food Industry, 2014, 35(1): 223-227 (0)
[27] 滕静, 陶宁萍, 李玉琪. 卵巢发育不同阶段长江刀鲚肉营养成分的分析及评价[J]. 现代食品科技, 2016, 32(9): 267-274
Teng J, Tao N P, Li Y Q. Analysis and evaluation of nutritional composition of Yangtze River Coilia meat at different ovarian development stages [J]. Modern Food Science and Technology, 2016, 32(9): 267-274 (0)
[28] 吴利红, 唐文乔, 张亚. 从体内脂肪的转移过程探讨凤鲚和刀鲚溯河产卵洄游距离的差异性[J]. 水产学报, 2017, 41(2): 212-220
Wu L H, Tang W Q, Zhang Y. Research on the differences of anadromous migratory distance between Coilia mystus and Coilia nasus based on the transfer process of body lipid [J]. Journal of Fisheries of China, 2017, 41(2): 212-220 (0)
[29] 王少梅, 陈少莲, 崔奕波. 用氯仿-甲醇抽提法测定鱼体脂肪含量的研究[J]. 水生生物学报, 1993, 17(2): 193-196
Wang S M, Chen S L, Cui Y B. On the procedures of chloroform-methanol extraction for the determination of lipid content of fish samples[J]. Acta Hydrobiologica Sinica, 1993, 17(2): 193-196 (0)
[30] Sheridan M A, Kao Y H. Regulation of metamorphosis-associated changes in the lipid metabolism of selected vertebrates[J]. American Zoologist, 1998, 38(2): 350-368 DOI: 10.1093/icb/38.2.350 (0)
[31] Weil C, Lefèvre F, Bugeon J. Characteristics and metabolism of different adipose tissues in fish[J]. Reviews in Fish Biology and Fisheries, 2013, 23(2): 157-173 DOI: 10.1007/s11160-012-9288-0 (0)
[32] Santinha P J M, Medale F, Corraze G, et al. Effects of the dietary protein: lipid ratio on growth and nutrient utilization in gilthead seabream (Sparus aurata L. ) [J]. Aquaculture Nutrition, 1999, 5(3): 147-156 DOI: 10.1046/j.1365-2095.1999.00107.x (0)
[33] Jobling M, Johansen S J S. Fat distribution in Atlantic salmon Salmo salar L. in relation to body size and feeding regime [J]. Aquaculture Research, 2003, 34(4): 311-316 DOI: 10.1046/j.1365-2109.2003.00820.x (0)
[34] 柳凌, 李荣, 张洁明, 等. 日本鳗鲡雌鳗卵巢发育期间肌肉脂肪酸的组成及消耗[J]. 水生生物学报, 2009, 33(6): 1011-1019
Liu L, Li R, Zhang J M, et al. Composition and metabolizing of lipids and fatty acids in muscle of female Anguilla japonica during the period of artificial inducing ovarian maturation [J]. Acta Hydrobiologica Sinica, 2009, 33(6): 1011-1019 (0)
[35] Jonsson N, Jonsson B, Hansen L P. Changes in proximate composition and estimates of energetic costs during upstream migration and spawning in Atlantic salmon Salmo salar [J]. Journal of Animal Ecology, 1997, 66(3): 425-436 DOI: 10.2307/5987 (0)
[36] Frøyland L, Lie Ø, Berge R. Mitochondrial and peroxisomal b-oxidation capacities in various tissues from Atlantic salmon Salmo salar [J]. Aquaculture Nutrition, 2000, 6(2): 85-89 DOI: 10.1046/j.1365-2095.2000.00130.x (0)
[37] Menoyo D, Lopez-Bote C J, Bautista J M, et al. Growth, digestibility and fatty acid utilization in large Atlantic salmon (Salmo salar) fed varying levels of n-3 and saturated fatty acids [J]. Aquaculture, 2003, 225(1-4): 295-307 DOI: 10.1016/S0044-8486(03)00297-7 (0)
[38] Henderson R J. Fatty acid metabolism in freshwater fish with particular reference to polyunsaturated fatty acids[J]. Archiv für Tierernaehrung, 1996, 49(1): 5-22 DOI: 10.1080/17450399609381859 (0)
[39] Mckenzie D J, Piraccini G, Piccolella M, et al. Effects of dietary fatty acid composition on metabolic rate and responses to hypoxia in the European eel (Anguilla anguilla) [J]. Fish Physiology and Biochemistry, 2000, 22(4): 281-296 DOI: 10.1023/A:1007865327923 (0)
[40] Polakof S, Médale F, Larroquet L, et al. Insulin stimulates lipogenesis and attenuates beta-oxidation in white adipose tissue of fed rainbow trout[J]. Lipids, 2011, 46(2): 189-199 DOI: 10.1007/s11745-010-3521-1 (0)
[41] O'Neill B, Le Roux A, Hoffman L C. Comparative study of the nutritional composition of wild versus farmed yellowtail (Seriola lalandi) [J]. Aquaculture, 2015, 448: 169-175 DOI: 10.1016/j.aquaculture.2015.05.034 (0)
[42] Mckenzie D J, Higgs D A, Dosanjh B S, et al. Dietary fatty acid composition influences swimming performance in Atlantic salmon (Salmo salar) in seawater [J]. Fish Physiology and Biochemistry, 1998, 19(2): 111-122 (0)
[43] Bell J G, Tocher D R, Sargent J R. Effect of supplementation with 20: 3(n-6), 20: 4(n-6) and 20: 5(n-3) on the production of prostaglandins E and F of the 1-, 2-and 3-series in turbot (Scophthalmus maximus) brain astroglial cells in primary culture [J]. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1994, 1211(3): 335-342 DOI: 10.1016/0005-2760(94)90158-9 (0)
[44] Palstra A, Curiel D, Fekkes M, et al. Swimming stimulates oocyte development in European eel[J]. Aquaculture, 2007, 270(1-4): 321-332 DOI: 10.1016/j.aquaculture.2007.04.015 (0)
[45] Furuita H, Unuma T, Nomura K, et al. Lipid and fatty acid composition of eggs producing larvae with high survival rate in the Japanese eel[J]. Journal of Fish Biology, 2006, 69(4): 1178-1189 DOI: 10.1111/jfb.2006.69.issue-4 (0)
Changes of fatty acid content and its components in different tissues during spawning migration processes of female Coilia nasus in the lower reaches of the Yangtze River
LI Li1,2, TANG Wenqiao1,2,3, ZHANG Ya1,2     
1. Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai    201306, China;
2. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai    201306, China;
3. Key Laboratory of Exploration and Utilization of Aquatic Resources, Ministry of Education,Shanghai Ocean University, Shanghai    201306, China
Abstract: In order to elucidate the transformation rule of fatty acids in body of female Coilia nasus during the spawning migration process, the fatty acid content and its components were determined in different tissues at different ovarian developmental stages (from stage Ⅲ to stage Ⅴ) of female C. nasus collected from the lower reaches of the Yangtze River. The changes in the components and contents of various fatty acids in the ovary, muscle and hepatopancreas were analyzed. The results showed that the total fatty acids content in ovary increased by 148.89 mg/g, in muscle decreased by 109.57 mg/g and in hepatopancreas decreased by 160.58 mg/g, respectively, during the period of ovarian development from stages III to V. The fatty acids components of ovary, muscle and hepatopancreas are basically the same at different ovarian developmental stages. They all contain three types and 24 kinds of fatty acids, including 9 saturated fatty acids (SFA), 6 monounsaturated fatty acids (MUFA) and 9 polyunsaturated fatty acids (PUFA). Among all the fatty acids, the content of oleic acid (C18:1n9c) was the highest, accounting for more than 18% of the total amount of fatty acids in each tissue. During the ovarian development from stage Ⅲ to stage Ⅴ, the content of oleic acid decreased by 86.36% in muscle, increased by 2.62 times in ovary; the content of essential fatty acids C18:2n6 and C18:3n3 decreased by 74.00% and 82.26% in muscle respectively, but increased by 225.87% and 183.96% respectively in ovary; the content of DHA decreased by 2.6 times in muscle, while increased by nearly 3 times in ovary. All of these showed that these fatty acids are closely related to reproductive activities. The present study also found that, the values of ARA/EPA in ovary of stage Ⅳ and stage Ⅴ were all less than 0.46, which means that female C. nasus in the Yangtze River had a good egg quality.
Key words: Coilia nasus    fatty acid    ovary    muscle    hepatopancreas