

JURNAL OF FISHERIES OF CHINA DOI: 10.11964/jfc.20200212162

草鱼 miR-462 通过靶向 cx32.2、slc9a3.1 和 tbk1 调控 嗜水气单胞菌感染诱导的免疫应答

王安琪¹, 陶丽竹¹, 周丰林¹, 徐晓雁¹, 沈玉帮², 李家乐^{1,2,3*} (1.上海海洋大学,农业农村部淡水水产种质资源重点实验室,上海 201306; 2.上海海洋大学,水产科学国家级实验教学示范中心,上海 201306; 3.上海海洋大学,水产养殖工程技术研究中心,上海 201306)

摘要: 为探究 miR-462 在嗜水气单胞菌感染草鱼肾脏细胞 (Ctenopharyngodon idella kideny, CIK) 后的调控机制,实验利用荧光定量技术检测了 CIK 细胞感染嗜水气单胞菌后 miR-462 表达水平的变化;运用 RNAhybrid 软件预测 miR-462 的靶基因,利用双荧光素酶报告基因系统进行确定;此外还分析了 miR-462 对靶基因下游基因的调控作用。结果显示,在 CIK 细胞感染嗜水气单胞菌的过程中, miR-462 的表达发生显著变化; cx32.2、 slc9a3.1 和 tbk1 的表达先降低后升高,与 miR-462 的表达模式呈负相关。双荧光素酶报告系统显示, miR-462 可靶向 cx32.2、 slc9a3.1 和 tbk1 的 3'非编码区抑制其表达,过表达miR-462 可以显著抑制 cx32.2、 slc9a3.1 和 tbk1 的表达。转染 miR-462 模拟物后,下游 slc4a4a、 tnfrsf5、 cxcl9 和 cxcl11 基因的表达受到抑制。研究表明, miR-462 参与调控嗜水气单胞菌感染后草鱼 CIK 细胞中的免疫应答。cx32.2、 slc9a3.1 和 tbk1 被鉴定为 miR-462 的靶基因。miR-462 可通过靶向 slc9a3.1 和 tbk1 影响下游基因的功能。

关键词: 草鱼肾脏细胞; 嗜水气单胞菌; miR-462; 免疫调节 中图分类号: S 941.42 文献标志码: A

草鱼 (Ctenopharyngodon idella) 是世界上养 殖产量最高的鱼类^[1]。然而,因细菌感染而引起 的草鱼发病和死亡问题时有发生。嗜水气单胞 菌 (Aeromonas hydrophila) 感染草鱼造成较高的死 亡率,严重影响了草鱼养殖业的健康发展^[2]。嗜 水气单胞菌属于气单胞菌属,在自然界中广泛 分布,是一种典型的人—兽—鱼共患病病原菌^[3]。 本实验室前期研究发现,嗜水气单胞菌感染后, 21 个 miRNAs 在易感和抗病草鱼的脾脏内差异 表达,提示 miRNA 可能在嗜水气单胞菌感染的 过程中发挥重要作用^[4]。

microRNA (miRNA) 是一类长约 22 个核苷酸的内源性非编码单链 RNA 分子,首次发现于秀

、用人们小心和马:A

丽隐杆线虫 (*Caenorhabditis elegans*) 中^[5]。成熟的 miRNA 通过与 AGO (Argonaute) 蛋白结合,生成 RNA 诱导沉默复合物 (RNA-induced silencing complex, RISC),作用于靶基因的 3'端非翻译区 (3'-untranslated region, 3'-UTR),诱导 mRNA 降解 或抑制 mRNA 翻译,从而实现基因在转录水平 后的表达调控^[6-7]。研究发现 miRNA 参与细胞的 发育^[8]、分化^[9]、增殖^[10]、凋亡^[11]等多种生命过 程,且可以对免疫反应进行精细调控。例如, pol-miR-3p-2 通过负调控 *p*53 抑制迟缓爱德华氏 菌 (*Edwardsiella tarda*) 感染 [^{12]};鳗弧菌 (*Vibrio anguillarum*)感染后,miR-122 可负调控鱼体内 *tlr*14 的表达^[13]。pol-miR-194a 过表达可促进 FG

资助项目:现代农业产业技术体系专项(CARS-45-03);上海市工程中心提升项目(19DZ2284300)

通信作者: 李家乐, E-mail: jlli2009@126.com

收稿日期: 2020-02-18 修回日期: 2020-04-13

细胞内迟缓爱德华氏菌增殖^[14],研究表明 miR-462 可能参与调控鱼类低氧应答^[15] 和免疫应答^[16]。

本实验分析了嗜水气单胞菌感染草鱼肾脏 细胞(*Ctenopharyngodon idella* kideny, CIK)对miR-462 表达水平的影响,通过双荧光素酶报告基因 系统鉴定miR-462的靶基因,分析miR-462对下 游基因的调控作用,以期为研究miRNA在鱼类 免疫应答中的调控机制提供更多的理论支撑。

1 材料与方法

1.1 实验材料与仪器

Opti-MEM 减血清培养基、M199 培养基、胎 牛血清、0.25% EDTA-胰蛋白酶、青霉素---链霉 素溶液、Lipofectamine 3000购自美国 Thermo Fisher Scientific 公司; miRNA 模拟物/抑制剂(agomir/ antagomir) 及其对照由上海吉玛制药技术有限公司 合成; RNAiso Plus 试剂、PrimeScript[™] RT reagent Kit with gDNA Eraser 反转录试剂盒、TB Green[®] *Premix Ex Tag*[™] II 荧光定量 PCR 试剂盒、Quick-Cut[™] Dra I和 Xba I限制酶、DNA 连接试剂盒、 DNA 凝胶回收试剂盒均购自日本 TaKaRa 公司; miRNA 反转录试剂盒 miScript II RT Kit 和荧光定 量 PCR 试剂盒 miScript SYBR® Green PCR Kit 购 自德国 Qiagen 公司;快速质粒小提试剂盒和 DH5α感受态细胞购自天根生化科技有限公司; pGEM[®]-T Easy 载体、pmirGLO 双荧光素酶 miRNA 靶基因表达载体和双荧光素酶报告基因检测试 剂盒均购自 Promega 公司。

CO₂细胞培养箱购自上海一恒科学仪器有限公司; Centrifuge 5424 R 冷冻离心机购自德国 Eppendorf公司; Nanodrop 2000c 分光光度计购 自 Thermo Scientific; CFX96 Real-Time System 实 时荧光定量 PCR 仪购自美国 Bio-Rad 公司。

1.2 细胞培养

草鱼肾脏细胞系购自中国典型培养物保藏 中心,细胞贴壁生长。采用含10%胎牛血清、 100 U/mL青霉素和100 μg/mL链霉素的M199培 养基,于28 °C、5% CO₂恒温培养箱中培养。每 3 天传代1次,取对数生长期细胞进行实验。

1.3 细菌感染

实验用嗜水气单胞菌 (AH10 菌株) 由张国亮 等^[17] 自草鱼体内分离,保存于武汉大学菌种保藏 中心 (保藏号: AB2014155)。感染实验前,将 CIK 细胞 (2×10⁶ 个/mL) 接种至 6 孔细胞板中,待 细胞密度达到 80%~90% 时,用 PBS 缓冲液润洗 细胞,更换无抗 M199 培养基 (含 10% 胎牛血清), 然后用 100 μL 嗜水气单胞菌 (10³ CFU/mL) 刺激 细胞, 30 min 后更换为含血清的加抗培养基。分 别收集感染后 0、6、12、24 和 36 h 的细胞样品。

1.4 靶位点预测和质粒构建

运用 RNAhybrid 软件对 miR-462 的潜在靶基 因进行预测。利用带限制性内切酶位点 Dra I 和 Xba I 的基因特异性引物,通过 PCR 扩增出候选 靶基因的 3'UTR,包含预测的 miR-462 结合位点。 用相同的限制酶酶切后克隆到 pmirGLO 荧光素 酶报告基因载体中。所有结果均通过测序进行 验证。

1.5 荧光素酶报告基因实验

将构建好的 pmirGLO-cx32.2、pmirGLO-slc9a 3.1 和 pmirGLO-tbk1 荧光素酶报告质粒与 miR-462 agomir 或对照 NC 共转染到 CIK 细胞中,每 组 3 个重复。转染 24 h 后,根据双荧光素酶报 告基因检测试剂盒说明书收集细胞裂解产物, 并测定萤火虫荧光素酶 (FL)及海肾荧光素酶 (RL)活性值,相对荧光素酶活性 (FL/RL)可反映 miR-462 与靶基因 3'UTR 的结合能力。

1.6 细胞转染

取处于对数生长期的 CIK 细胞,将其接种 至 24 孔细胞板中,待细胞汇合度达到 80%~90% 时,更换新鲜的细胞培养基,然后依据 Lipofectamine 3000 试剂说明书将合成的 miR-462 agomir/ antagomir 或 阴性 对照 negative control (NC)/inhibitor N.C.转染到细胞中,转染后 24 h 收取细胞样 品。每组实验 3 个生物学重复。

1.7 实时定量 PCR

按照 RNAiso Plus 说明书提取细胞的总 RNA, 琼脂糖凝胶电泳检验其质量,并用 Nanodrop 2000c 分光光度计进行定量。根据 miRNA 反转 录试剂盒和 RNA 反转录试剂盒的说明书分别对 RNA 进行反转录获得 cDNA。miRNA 的 qPCR 反 应条件: 95 °C 15 min; 94 °C 15 s, 55 °C 30 s, 70 °C 30 s, 40 个循环。总 RNA 的 qPCR 反应条 件: 95 °C 30 s; 95 °C 5 s, 60 °C 30 s, 40 个循环。 反应结束后进行熔解曲线分析,以验证产物扩 增的特异性。每个样品 3 个平行,用 2^{-ΔΔC_i}法计 算不同样品间的表达差异。相对 miRNA 的表达 采用 miR-101a 作为内参^[18],相对 mRNA 的表达 采用 18*S rRNA* 作为内参。用于 qPCR 分析的引物 见表 1。

表 1	实时定量	PCR	所用	的引	物序列
~v< I		1 0 10	//////	ну ј	

 Tab. 1
 Primers used for quantitative real-time PCR

引物名称	正向序列(5′→3′)	反向序列(5'→3')
primer name	forward sequences $(5' \rightarrow 3')$	reverse sequences $(5' \rightarrow 3')$
miR-462	TAACGGAACCCATAATGCAGCT	
miR-101a	TACAGTACTGTGATAACTGAAG	
<i>cx</i> 32.2	AGCCTGTGTGTCTCTGCTACTG	CCGCTCTCATACTGCTTGTTC
<i>slc</i> 9 <i>a</i> 3.1	GTGGTGTATTTCACTGTCATTC	CCTGTTCCAACCTCTGGT
tbk1	AGACGATGCACAAGAAAGCG	TTTGCTCCATTGAGGCCAGA
slc4a4a	CAGACAAGCCAGAAAAAGACC	CCAAGCAGAATGAACAGAAATC
tnfrsf5	TGAGGGCTGTATTCGTTCTT	CGCATTTGGTTTCTCTTGTG
cxcl9	AACTCTGTGTGTCTCAATCC	TTCTCTGCCTCCATCTGT
cxcl11	AAGAATGGTGCAGGATGG	GGATGTTGGTGCTGATGAC
18S rRNA	GGACACGGAAAGGATTGACAG	CGGAGTCTCGTTCGTTATCGG

1.8 统计分析

应用 SPSS 20.0 统计软件进行数据分析,采 用单因素方差分析和 Duncan 氏多重比较法进行 组间差异性检测,计量数据以平均值±标准差 (mean±SD)表示。以P<0.05 为差异显著,P<0.01 为差异极显著。

2 结果

2.1 嗜水气单胞菌感染对 miR-462 表达的影响

qPCR 结果显示, 嗜水气单胞菌感染 CIK 细胞后, miR-462 的表达水平呈现先升高后降低的趋势 (*P* < 0.01, 图 1)。感染后 6 h, miR-462 表达 水平显著高于对照组 (*P* < 0.01),随后逐渐降低; 感染后 12 h, miR-462 表达水平降低至与对照组 无显著差异; 感染后 24 和 36 h 的表达水平极显 著低于对照组 (*P* < 0.01)。结果显示,在嗜水气 单胞菌感染 CIK 细胞后对 miR-462 产生了影响。

2.2 miR-462 靶基因的鉴定

结合课题组已有的 miRNA-mRNA 负表达关 系和生物信息学软件 RNAhybrid,分析预测 miR-462 的靶基因。结果表明,miR-462 可与 cx32.2、 slc9a3.1 和 tbk1 的 3'-UTR 靶向结合 (图 2)。

qRT-PCR 结果显示, 嗜水气单胞菌感染过程中, cx32.2、slc9a3.1 和 tbk1 的表达先降低后中国水产学会主办 sponsored by China Society of Fisheries

图 1 miR-462 在嗜水气单胞菌感染 CIK 细胞中的表达 图中数据表示为平均值±标准差 (n = 4), "*"代表显著差异, P <

0.05; "**"代表极显著差异, P<0.01, 下同

Fig. 1 Expression profiling of miR-462 in CIK cells upon *A. hydrophila* infection

Error bars indicate the mean and standard deviation (n = 4). "*" represents significant difference, P < 0.05; "**" represents very significant difference, P < 0.01, the same below

升高,与miR-462的表达模式呈现负相关(图3)。

包含 miR-462 结合位点的 *cx*32.2、*slc*9*a*3.1 和 *tbk*1 3'-UTR 序列被克隆至荧光素酶报告基因 载体下游,构成 pmirGLO 报告质粒: pmirGLOcx32.2、pmirGLO-slc9a3.1 和 pmirGLO-tbk1。转 染 miR-462 agomir 组显著抑制了 *cx*32.2、*slc*9*a*3.1 和 *tbk*1 的荧光素酶活性,与对照组相比分别下

图 2 miR-462 靶基因预测

miR-462 与 cx32.2、slc9a3.1 和 tbk1 的 3'-UTR 结合位点示意图

Fig. 2 Prediction of miR-462 target genes

Schematic diagram of the binding sites of miR-462 to 3'-UTR of cx32.2, slc9a3.1 and tbk1

降约40.14%、39.22%和17.35%(P<0.05或P<0.01, 图4)。说明miR-462能靶向作用于cx32.2、slc9a3.1 和 tbk1的3'-UTR互补位点,抑制其表达。

miR-462 过表达组的 miR-462 相对表达水平 为(7903.73±1414.21),明显高于对照组(1.10±0.09) (P < 0.01, 图 5-a),提示过表达试剂转染成功, 可特异性提高 CIK 细胞内 miR-462 的表达水平。 以18S rRNA 为内参, 检测靶基因 cx32.2、slc9a3.1 和 tbk1 的相对表达水平 (图 5-b), 与对照组相比, 转染 miR-462 agomir 组的 cx32.2、slc9a3.1 和 tbk1 的表达水平被抑制,分别为(0.64±0.10)、(0.51± 0.15) 和 (0.54 ± 0.01)。miR-462 抑制组的miR-462 相对表达水平为(0.48±0.14),明显低于对照组 (0.97 ± 0.09)(P < 0.01, 图 5-c),提示抑制试剂转 染成功,可特异性降低 CIK 细胞内 miR-462 表达 水平。以18S rRNA 为内参, 检测靶基因的相对 表达水平(图 5-d),与对照组相比,转染 miR-462 antagomir 组的 cx32.2、slc9a3.1 和 tbk1 的表达水 平分别被诱导至(4.28±0.48)、(1.82±0.28)和(1.28± 0.09).

2.3 miR-462 对下游基因的调控作用

qPCR 结果显示,过表达 miR-462 可以显著 下调下游基因 *slc4a4a、tnfrsf*5、*cxcl*9 和 *cxcl*11 的 表达 (*P* < 0.01,图 6-a);同样,抑制 miR-462 的 表达则会显著提高下游基因 *slc4a4a、tnfrsf*5、*cxcl*9 和 *cxcl*11 的表达 (*P* < 0.05,图 6-b)。

3 讨论

嗜水气单胞菌是条件致病菌,在各种水体 环境中广泛分布,其对机体细胞的侵袭除与细 菌表面黏附因子有关外,还涉及到细胞表面受 体、细胞骨架以及信号转导等机制^[19]。嗜水气单 胞菌感染可引发水生动物的运动性气单胞菌败 血症^[20],给水产养殖业带来巨大的经济损失。促 炎性细胞因子 (如 il-1β、tnf-α) 通过激活一系列细 胞内信号转导机制,推动炎症发展,从而调控 败血症的发生[21]。因此,对嗜水气单胞菌感染相 关免疫基因及炎症调控的研究至关重要。 miRNAs 控制着多种与内环境稳定、发育和疾病 相关的生物过程以及细胞信号传导途径,同时 它们也是调节炎症和免疫反应的关键^[22-23]。不同 物种间高度保守的 miRNAs 可能靶向数百种不同 的 mRNAs^[24], 单个 miRNA 也可通过靶向多个 mRNAs调控不同的功能。例如, miR-214下调 mkk3 可以抑制宫颈癌细胞的恶性表型[25], 靶向 atf4 和 ezh2则可以保护红细胞免受氧化应激^[26]。 此外, 毒死蜱暴露过程中, miR-2188-3p 和 miR-731 通过靶向 TLR 通路诱导鲤头肾细胞凋亡^[27]。 金黄色葡萄球菌 (Staphylococcus aureus) 感染过程 中, miR-128 通过调控 MvD88 抑制炎症反应的进

嗜水气单胞菌感染后 CIK 细胞中 cx32.2 (a), slc9a3.1 (b) 和 tbk1 (c) 的表达情况

Fig. 3 Expression profiling of *cx32.2*, *slc9a3.1* and *tbk1* in CIK cells upon *A. hydrophila* infection

Expression profiles of cx32.2 (a), slc9a3.1 (b) and tbk1 (c) in CIK cells following *A. hydrophila* infection. n = 3

一步发展^[28]。梅毒螺旋体 (*Treponema pallidum*) 通过上调 miR-101-3p 的表达,抑制 *tlr*2 和炎症细胞

图 4 miR-462 抑制 CIK 细胞中 cx32.2、 slc9a3.1 和 tbk1 的表达

1. *cx*32.2, 2. *slc*9*a*3.1, 3. *tbk*1; miR-462 agomir 和重组质粒转染 CIK 细胞后的双荧光素酶活性测定,包括潜在的靶基因 *cx*32.2、 *slc*9*a*3.1 和 *tbk*1

Fig. 4 miR-462 suppressed cx32.2, slc9a3.1 and tbk1 expression in CIK cells

1. *cx*32.2, 2. *slc*9*a*3.1, 3. *tbk*1; Dual luciferase activity assay after miR-462 agomir and recombinant plasmid were transfected to CIK cells, including potential target genes *cx*32.2, *slc*9*a*3.1 and *tbk*1

因子的产生[29]。

早期研究报道显示, miR-462参与干扰素介 导的硬骨鱼抗病毒防御,推测其在脊椎动物先 天免疫中发挥重要作用^[30]。而目前关于 miR-462 参与鱼类抵抗细菌感染的作用和机制尚不明确。 课题组前期研究表明, 嗜水气单胞菌感染草鱼 后, miR-21^[31]、miR-23a-3p^[32]和miR-23a-5p^[32]通 过调控 jnk、ccr7 和 CiGadd45ab,调节草鱼炎症 反应和细胞凋亡。本研究着重于探究嗜水气单 胞菌感染 CIK 细胞后, miR-462 如何参与免疫应 答反应。CIK 细胞感染嗜水气单胞菌后, miR-462 的表达发生显著变化,说明 miR-462 参与了 免疫反应的调控。miR-462 在感染 CIK 细胞早期 的 6 h 表达上调, 但在将分析延长到 36 h 后, miR-462的表达显著下调。因此, 推测 miR-462 可能是调节嗜水气单胞菌感染早期事件的调节 因子。类似的细菌调控 miRNA 的表达在其他鱼 类中也有报道,它们在受到细菌刺激后发生明 显的表达模式变化^[12]。然而, miR-462 在嗜水气 单胞菌感染过程中对免疫应答的潜在作用尚不 清楚。

脊椎动物可依靠自身免疫系统,通过有效的免疫应答,如抵御细菌侵袭^[33]、调控炎症发 生^[34]、抑制细胞炎症等^[35],维护体内环境稳定, 抵御细菌感染^[36]。生物信息学软件 RNAhybrid 的 预测结果提示 cx32.2、slc9a3.1和 tbk1 可能是

miR-462 agomir 转染 CIK 细胞后, qRT-PCR 检测 miR-462 (a) 和靶基因 *cx*32.2、*slc*9*a*3.1 和 *tbk*1 (b) 的表达; miR-462 antagomir 转染 CIK 细胞后, qRT-PCR 检测 miR-462 (c) 和靶基因 *cx*32.2、*slc*9*a*3.1 和 *tbk*1 (d) 的表达; (a) 1. 模拟物对照, 2. miR-462 模拟物; (b) (d) 1. *cx*32.2, 2. *slc*9*a*3.1, 3. *tbk*1; (c) 1. 抑制剂对照, 2. miR-462 抑制剂

Fig. 5 miR-462 targets cx32.2, slc9a3.1 and tbk1

Expression of miR-462 (a) and target genes *cx*32.2, *slc*9*a*3.1 and *tbk*1 (b) by qRT-PCR after miR-462 agomir was transfected to CIK cells. Expression of miR-462 (c) and target genes *cx*32.2, *slc*9*a*3.1 and *tbk*1 (d) by qRT-PCR after miR-462 antagomir was transfected to CIK cells. (a) 1. miR-Ctrl, 2. miR-462; (b) (d) 1. *cx*32.2, 2. *slc*9*a*3.1, 3. *tbk*1; (c) 1. ctrl-inhibitor, 2. miR-462-inhibitor

图 6 miR-462 对下游基因的调控作用

miR-462 agomir (a) 或 antagomir (b) 转染 CIK 细胞后, qRT-PCR 检测下游基因 *slc4a4a、tnfrsf5、cxcl9* 和 *cxcl11* 的表达; (a) (b) 1. *slc4a4a*, 2. *tnfrsf5*, 3. *cxcl9*, 4. *cxcl11*

Fig. 6 Regulatory effect of miR-462 on downstream genes

Expression of downstream genes *slc4a4a*, *tnfrsf*5, *cxcl*9 and *cxcl*11 by qRT-PCR after miR-462 agomir (a) or antagomir (b) was transfected to CIK cells. (a) (b) 1. *slc4a4a*, 2. *tnfrsf*5, 3. *cxcl*9, 4. *cxcl*11; *n* = 3

https://www.china-fishery.cn

miR-462的潜在靶基因。cx32.2来自缝隙连接蛋 白家族,是鱼类所特有的一种蛋白^[37],主要在肠 道防控病原微生物的入侵[33]。肠盐转运介质 slc9a3也在人体肠道炎症的发生过程中发挥了重 要作用^[34]。tbk1 属于 IkB 激酶家族,是一种丝氨 酸/苏氨酸蛋白激酶,在细胞增殖^[38]、凋亡^[39]和 自噬^[40]等先天性免疫应答中发挥重要作用。CIK 细胞感染嗜水气单胞菌后, cx32.2、slc9a3.1和 tbk1 与 miR-462 的表达模式呈现负相关。双荧光 素酶报告基因系统说明 cx32.2、slc9a3.1 和 tbk1 是 miR-462 的可能靶基因。miR-462 的过表达和 抑制实验进一步证实了 cx32.2、slc9a3.1 和 tbk1 是 miR-462 的靶基因, 受到其负调控。此外, 转 染miR-462 后, *slc*9a3.1 和*tbk*1 的下游基因 *slc*4a4a、 tnfrsf5、cxcl9和 cxcl11 表达量也受到抑制,说明 miR-462 可通过靶向 slc9a3.1 和 tbk1 影响下游基 因的功能。miR-462 靶向 slc9a3.1 影响与之协同 作用的 slc4a4^[41],共同调控肠道炎症的发生。 tnfrsf5 主要参与细胞和体液适应性免疫的启动和 发展过程,包括T细胞依赖性免疫球蛋白类别 转换等^[42], cxcl9 和 cxcl11 激活趋化因子受体 CXCR3 可调控T细胞向炎症部位的迁移^[43],因而miR-462 通过调控下游基因 cxcl9 和 cxcl11 的表达, 可能进一步影响T细胞的适应性免疫。

实验结果表明, 嗜水气单胞菌感染显著影响 miR-462 的表达, miR-462 参与调控草鱼 CIK 细胞中的免疫应答。cx32.2、slc9a3.1和 tbk1 被鉴 定为 miR-462 的靶基因。此外, miR-462 可通过 靶向 slc9a3.1和 tbk1 影响下游基因的功能。结果 表明, miR-462 在鱼类免疫反应调控中起着重要 作用。

参考文献 (References):

- FAO. Fishery and aquaculture statistics 2017[M]. Rome: FAO, 2019.
- [2] Song X H, Zhao J, Bo Y X, et al. Aeromonas hydrophila induces intestinal inflammation in grass carp (*Ctenopharyngodon idella*): an experimental model[J].
 Aquaculture, 2014, 434: 171-178.
- [3] 陆承平. 致病性嗜水气单胞菌及其所致鱼病综述[J].水产学报, 1992, 16(3): 282-288.

中国水产学会主办 sponsored by China Society of Fisheries

Lu C P. Pathogenic *Aeromonas hydrophila* and the fish diseases caused by it[J]. Journal of Fisheries of China, 1992, 16(3): 282-288(in Chinese).

- [4] Xu X Y, Shen Y B, Fu J J, et al. Next-generation sequencing identified microRNAs that associate with motile aeromonad septicemia in grass carp[J]. Fish & Shellfish Immunology, 2015, 45(1): 94-103.
- [5] Lee R C, Feinbaum R L, Ambros V. The *Caenorhab*ditis elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-854.
- [6] Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297.
- [7] Dalmay T. Mechanism of miRNA-mediated repression of mRNA translation[J]. Essays in Biochemistry, 2013, 54: 29-38.
- [8] Farrell B C, Power E M, Mc Dermott K W. Developmentally regulated expression of Sox9 and microRNAs 124, 128 and 23 in neuroepithelial stem cells in the developing spinal cord[J]. International Journal of Developmental Neuroscience, 2011, 29(1): 31-36.
- [9] Nelson L D, Suyama E, Kawasaki H, et al. Use of random ribozyme libraries for the rapid screening of apoptosis- and metastasis-related genes[J]. TARGETS, 2003, 2(5): 191-200.
- [10] Ma F, Zhang L, Ma L, et al. MiR-361-5p inhibits glycolytic metabolism, proliferation and invasion of breast cancer by targeting FGFR1 and MMP-1[J]. Journal of Experimental & Clinical Cancer Research, 2017, 36: 158.
- [11] Ye Y M, Perez-Polo J R, Qian J Q, et al. The role of microRNA in modulating myocardial ischemia-reperfusion injury[J]. Physiological Genomics, 2011, 43(10): 534-542.
- [12] Guan X L, Zhang B C, Sun L. Japanese flounder polmiR-3p-2 suppresses *Edwardsiella tarda* infection by regulation of autophagy via p53[J]. Developmental & Comparative Immunology, 2020, 103: 103531.
- [13] Cui J X, Chu Q, Xu T J. miR-122 involved in the regulation of toll-like receptor signaling pathway after *Vibrio* anguillarum infection by targeting TLR14 in miiuy croaker[J]. Fish & Shellfish Immunology, 2016, 58: 67-72.
- [14] Guan X L, Zhang B C, Sun L. pol-miR-194a of Japanese flounder (*Paralichthys olivaceus*) suppresses type I interferon response and facilitates *Edwardsiella tarda* infection[J]. Fish & Shellfish Immunology, 2019, 87:

220-225.

- [15] Huang C X, Chen N, Wu X J, *et al.* The zebrafish miR-462/miR-731 cluster is induced under hypoxic stress via hypoxia-inducible factor 1α and functions in cellular adaptations[J]. The FASEB Journal, 2015, 29(12): 4901-4913.
- [16] Eslamloo K, Inkpen S M, Rise M L, et al. Discovery of microRNAs associated with the antiviral immune response of Atlantic cod macrophages[J]. Molecular Immunology, 2018, 93: 152-161.
- [17] 张国亮, 王浩, 张也, 等. 嗜水气单胞菌AH10 (CCTCC AB2014155)的全基因组测序及比较分析[J]. 中国水产科学, 2016, 23(5): 995-1005.
 Zhang G L, Wang H, Zhang Y, et al. Whole-genome

sequencing and comparative analysis of *Aeromonas hydrophila* AH10 (CCTCC AB2014155)[J]. Journal of Fishery Sciences of China, 2016, 23(5): 995-1005(in Chinese).

- [18] Xu X Y, Shen Y B, Fu J J, et al. Determination of reference microRNAs for relative quantification in grass carp (*Ctenopharyngodon idella*)[J]. Fish & Shellfish Immunology, 2014, 36(2): 374-382.
- [19] Rosenshie I, Finlay B B. Exploitation of host signal transduction pathways and cytoskeletal functions by invasive bacteria[J]. Bioessays, 1993, 15(1): 17-24.
- [20] Nielsen M E, Høi L, Schmidt A S, et al. Is Aeromonas hydrophila the dominant motile Aeromonas species that causes disease outbreaks in aquaculture production in the Zhejiang Province of China?[J]. Diseases of Aquatic Organisms, 2001, 46(1): 23-29.
- [21] Chen H J, Yuan G L, Su J G, et al. Hematological and immune genes responses in yellow catfish (*Pelteoba-grus fulvidraco*) with septicemia induced by *Edwardsi-ella ictaluri*[J]. Fish & Shellfish Immunology, 2020, 97: 531-539.
- [22] Hua Y L, Zhang J, Jia Z H, et al. Immune-related genes response to stimulation of miR-155 overexpression in CIK (*Ctenopharyngodon idella* kidney) cells and zebrafish[J]. Fish & Shellfish Immunology, 2019, 94: 142-148.
- [23] Yao Y L, Xu K L, Sun Y X, *et al.* MiR-215-5p inhibits the inflammation injury in septic H9c2 by regulating ILF3 and LRRFIP1[J]. International Immunopharmacology, 2020, 78: 106000.

- [24] Baek D, Villén J, Shin C, et al. The impact of microR-NAs on protein output[J]. Nature, 2008, 455(7209): 64-71.
- [25] Peng R Q, Cheng X S, Zhang Y, et al. miR-214 downregulates MKK3 and suppresses malignant phenotypes of cervical cancer cells[J]. Gene, 2020, 724: 144146.
- [26] Gao M, Liu Y, Chen Y, et al. miR-214 protects erythroid cells against oxidative stress by targeting ATF4 and EZH2[J]. Free Radical Biology and Medicine, 2016, 92: 39-49.
- [27] Liu Q, Yang J, Gong Y F, *et al.* Role of miR-731 and miR-2188-3p in mediating chlorpyrifos induced head kidney injury in common carp via targeting TLR and apoptosis pathways[J]. Aquatic Toxicology, 2019, 215: 105286.
- [28] Ma X F, Guo S, Jiang K F, et al. MiR-128 mediates negative regulation in *Staphylococcus aureus* induced inflammation by targeting MyD88[J]. International Immunopharmacology, 2019, 70: 135-146.
- [29] Huang T, Yang J Y, Zhang J, et al. MiR-101-3p downregulates TLR2 expression, leading to reduction in cytokines production by T. pallidum-stimulated macrophages[J]. Journal of Investigative Dermatology, 2020.
- [30] Bela-ong D B, Schyth B D, Zou J, et al. Involvement of two microRNAs in the early immune response to DNAvaccination against a fish rhabdovirus[J]. Vaccine, 2015, 33(28): 3215-3222.
- [31] Tao L Z, Xu X Y, Fang Y, et al. miR-21 targets jnk and ccr7 to modulate the inflammatory response of grass carp following bacterial infection[J]. Fish & Shellfish Immunology, 2019, 94: 258-263.
- [32] Fang Y, Xu X Y, Shen Y B, et al. miR-23a-3p and miR-23a-5p target CiGadd45ab to modulate inflammatory response and apoptosis in grass carp[J]. Fish & Shellfish Immunology, 2020, 98: 34-44.
- [33] Pérez-Sánchez J, Benedito-Palos L, Estensoro I, et al. Effects of dietary NEXT ENHANCE[®]150 on growth performance and expression of immune and intestinal integrity related genes in gilthead sea bream (*Sparus aurata* L.)[J]. Fish & Shellfish Immunology, 2015, 44(1): 117-128.
- [34] Lohi H, Mäkelä K, Pulkkinen K, et al. Upregulation of CFTR expression but not SLC26A3 and SLC9A3 in ulcerative colitis[J]. American Journal of Physiology-中国水产学会主办 sponsored by China Society of Fisheries

Gastrointestinal and Liver Physiology, 2002, 283(3): G567-G575.

- [35] Xu D C, Jin T J, Zhu H, *et al.* TBK1 suppresses RIPK1driven apoptosis and inflammation during development and in aging[J]. Cell, 2018, 174(6): 1477-1491.e19.
- [36] Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity[J]. Cell, 2006, 124(4): 783-801.
- [37] Cruciani V, Mikalsen S O. The vertebrate connexin family[J]. Cellular and Molecular Life Sciences: CMLS, 2006, 63(10): 1125-1140.
- [38] Sarraf S A, Sideris D P, Giagtzoglou N, et al. PINK1/Parkin influences cell cycle by sequestering TBK1 at damaged mitochondria, inhibiting mitosis[J]. Cell Reports, 2019, 29(1): 225-235.e5.
- [39] Yu H Y, Cleveland D W. Tuning apoptosis and neuroinflammation: TBK1 Restrains RIPK1[J]. Cell, 2018, 174(6): 1339-1341.
- [40] Kumar S, Gu Y X, Abudu Y P, et al. Phosphorylation of

syntaxin 17 by TBK1 controls autophagy initiation[J]. Developmental Cell, 2019, 49(1): 130-144.e6.

 [41] 郭义敏, 刘颖, 陈历明. 近端肾小管碳酸氢根重吸收的 分子机制及代谢性酸中毒[J]. 生理学报, 2014, 66(4): 398-414.

> Guo Y M, Liu Y, Chen L M. Bicarbonate reabsorption in proximal renal tubule: molecular mechanisms and metabolic acidosis[J]. Acta Physiologica Sinica, 2014, 66(4): 398-414(in Chinese).

- [42] Yao X Y, Wu J, Lin M, et al. Increased CD40 expression enhances early STING-Mediated type I interferon response and host survival in a rodent malaria model[J]. PLoS Pathogens, 2016, 12(10): e1005930.
- [43] Namkoong H, Song M Y, Seo Y B, et al. Enhancement of antigen-specific CD8 T cell responses by co-delivery of Fc-fused CXCL11[J]. Vaccine, 2014, 32(10): 1205-1212.

miR-462 modulates cellular immune response by targeting cx32.2, slc9a3.1 and tbk1 in CIK cells infected with Aeromonas hydrophila

WANG Anqi¹, TAO Lizhu¹, ZHOU Fenglin¹, XU Xiaoyan¹, SHEN Yubang², LI Jiale^{1,2,3*}

 Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China;

2. National Demonstration Center for Experimental Fisheries Science Education,

Shanghai Ocean University, Shanghai 201306, China;

3. Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China)

Abstract: Bacterial septicemia is a systemic inflammatory reaction mainly caused by the infection of *Aeromonas hydrophila*. Excessive development of inflammation may lead to septic shock or death in fish. A large number of studies have confirmed that miRNA is involved in the regulation of immune response after bacterial infection. To explore the regulatory mechanism of miR-462 in *Ctenopharyngodon idella* kidney (CIK) cells infected with *A. hydrophila*, the expression profiles of miR-462 upon *A. hydrophila* infection was detected by real-time quantitative PCR; the target genes of miR-462 were predicted by RNAhybrid software, and identified by dual-luciferase reporter assay system; in addition, the regulatory effect of miR-462 on downstream genes was analyzed. The results showed that the expression of miR-462 changed significantly after *A. hydrophila* infection, indicating that miR-462 participated in the regulation of immune response. Dual-luciferase reporter assay revealed that *cx32.2, slc9a3.1* and *tbk1* are the target genes of miR-462, which is further confirmed by the overexpression and inhibition experiments of miR-462. The expression of *slc4a4a, tnfrs5, cxcl9* and *cxcl11* were suppressed after miR-462 ant-agomir was transfected, which proved that miR-462 could affect the function of the downstream genes by target-ing *slc9a3.1* and *tbk1*. Our results may provide a theoretical basis for investigating the molecular mechanism of miR-462 regulating immune response in *C. idella*.

Key words: Ctenopharyngodon idella kidney(CIK); Aeromonas hydrophila; miR-462; immunomodulation

Corresponding author: LI jiale. E-mail: jlli2009@126.com

Funding projects: China Agriculture Research System (CARS-45-03); Shanghai Engineering and Technology Center for Promoting Ability (19DZ2284300)