JOURNAL OF FISHERIES OF CHINA

1981年3月

研究简报

拖网网口形状的积分计算法

ON THE USE OF INTEGRAL METHOD TO CALCULATE SHAPES OF THE TRAWL-NET MOUTH

励伸车

(上海市海洋渔业公司)

Li Zhongnian

(Shangkai Marine Fishing Company)

提 要

由于鱼类等的习性与栖息水层各不相同,渔场情况又常起变化,在拖网捕捞作业中,运用一些技术措施 改变网口的几何形状是提高拖网渔获效果的一个途径。随着电子仪器的应用和捕捞技术的逐步提高,各国 渔业工作者都在从事这方面的研究。

本文对现有拖网网口形状的某些计算方法进行了初步探讨,提出了一种较为精确而实用的积分 计 算法。并将计算结果列成数据用表,用于拖网网口参数的换算。

拖网的渔获效果除取决于鱼群密集程度、拖网的滤水性能、拖网前端空纲与袖网的塞赶阻拦和威吓作用之外,还 与网口形状和大小相关。因此,在拖力恒定的条件下,研究最合理的网口几何形状,设法增加网口尺寸,在生产上是 有意义的。

在不同的季节、甚至在昼夜的不同时间,底层鱼类离海底栖息的水层都是不一样的。在底拖作业中,如遇鱼群离底较高,应使拖网保持较大的网口高度;若鱼群贴近海底,应设法维持尽可能大的网口宽度。

1977 年 5 月底至 6 月初,挪威 2 米大网目尼龙中层拖网,在法罗浅滩进行中层拖曳时,发生了与上述底拖作业相类似的情况¹³。由于蓝牙鳕栖息在 50—100 米水层中,此时网口高度比网口宽度更显得有效。

为了分析拖阅网口形状变化的规律,我们假定: ①拖网网口形状是椭圆形的(此种假设更适宜于四片式、六片式拖网)。②忽略拖速和袖端问距对拖网网目形状的 微 弱 影

响,认为渔捞作业中拖网网口的周长是常量。

如图1所示,在XO Y直角座标系中,椭圆的标准方程是:

$$x^2/a^2 + y^2/b^2 = 1 (1)$$

式中: a——长半轴;

b----短半轴。

椭圆周长无法用初等函数确切表达,常用的近似计算式是:

$$L \approx 2\pi a(1 - \varepsilon^2/4) \tag{2}$$

$$L \approx \pi [(a+b)/2 + \sqrt{(a^2+b^2)/2}]$$
 (3)

式中:

L----椭圆周长(即网口作业周长)

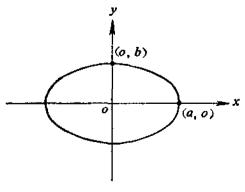


图1 椭 圆

(5)

-. 4

a----长半轴(即网口宽度的二分之一)

b----短半轴(即网口高度的二分之一)

8---椭圆离心率

∓──-圆周率

式(2),式(3)不仅精确度差,而且计算繁琐,使用很不方便。日本森洪郎⁽³⁾提出网口形状近似方程式为:

$$L \approx 2a[1+0.57(b/a)k]$$
 (4)

式中:

$$K \approx 1.55 - 0.217(b/a)$$

L---椭圆网口周长

a---长轴(即网口宽度)

b——短轴(即网口高度)

K------取决于网口形状的系数

森洪郎接着论证,如果椭圆周长的计算误差允许在1%左右,则搲网网口的实际总长度为:

$$P \approx 2d/K[1+0.57(h/d)^{\frac{3}{4}}]$$
 (6)

式中:

P—— 拖网网口的实际总长度(该文所设);

d-----拖网网口宽度;

L——取决于网口形状的系数

森洪郎进一步将上述计算式应用于四片式拖网,从求得的数据证明:四片式拖网的水平扩张即轴端间距与网口宽度 成正比,网口高度与拖速成反比。

但是,上述近似方程式涉及指数函数,必须进行对数运算,使用时还很繁复。

本文根据椭圆弧长微分式,经过积分运算,求出椭圆周长的积分表达式。为了便于使用,编制了数据用表;借助该表能够迅速地进行L(网口作业周长)、2a(网口宽度)、2b(网口高度)、<math>S(网口面积)这四个网口参数的互相换算,这是一种比较精确实用的方法,现推导如下:

由式(1)得:

$$y = \pm b/a(a^2 - x^2)^{\frac{1}{2}} \tag{7}$$

对式(7)微分:

$$y' = \mp bx/a(a^2 - x^2)^{-\frac{1}{2}} \tag{8}$$

椭圆弧长微分式:

$$dL = (1 + y'^2)^{\frac{1}{2}} dx (9)$$

式(9)积分(参看图1):

$$L = 4 \int_{0}^{s} (1 + y'^{2})^{\frac{1}{2}} dx \tag{10}$$

将式(8)代人式(10)得:

$$L = 4 \int_{a}^{\pi} 1 + [\mp bx/a(a^2 - x^2)^{-\frac{1}{2}}]^2 dx$$
 (11)

设 $x = a \sin \theta$, 则

$$dx = a \cos \theta \, d\theta \tag{12}$$

将式(12)代入式(11)进行积分变量代换:

$$L = 4a \int_{0}^{\pi/2} \left(1 - \frac{a^2 - b^2}{a^2} \sin^2 \theta\right)^{\frac{1}{2}} d\theta \tag{13}$$

式(13)属于 $\int_0^{\theta} (1 - K^2 \sin^2 \theta)^{\frac{1}{2}} d\theta$ 类型的椭圆积分,可查表求得其积分值。

令 $K^2 = (a^2 - b^2)/a^2$, a > b > 0 0 < K < 1。取用间隔均为 1/100 的 b/a 值 (即不同的基值),从式(13/计算出对应的 L/2a、L/2b 二项数值,已列在数据用表中,供查用。

在某些情况下,拖网的渔获效果与网口滤水量成正比,这时就需设法增加网口面积。同一顶拖网,在网口高度与网口宽度的比值不同时,网口面积随着而变化。用二次函数极值法可求得,在网口高度等于网口宽度即网口戏圆形时,其面积取得极大值;当其中任一项为飞时,网口面积存在极小值为零。在两个极值的闭区间内,网口面积是连

续函数,可以用定积分求解。现已将网口面积(8)计算值以 $8/b^2$ 形式纳入数据用表,由此,可迅速求出网口形状变化时,相应的网口面积值。

图 2 用曲线图方式表示 b/a 与 L/2a, L/2b, S/b^2 的函数关系, 曲线还显示了它们的变化速率。

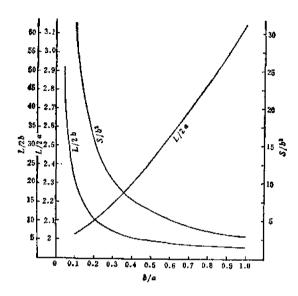


图 2 b/a 与 L/2a, L/2b, S/b^2 的函数曲线图

参考文献

- [1] 张友声等,1962。渔具理论与捕鱼技术。农业出版社。
- [2] 茅绍廉摘译(原文日语),1980。适用于拖网设计的近似方程式(I,关于四片式拖网网口中部的高度)。水产文 摘,1:12(00810)。
- [3] Luding Karlsen, 1977. Development and Testing of Rope and Large Meshed Midwater Trawls in Norway. Institute of Fishery Technology Research, Box 1964. N-5011. Nordnes Norway.
- [4] Баранов, Ф. И. 1960. Техника промыщленного рыболевства, Т. Пищеприиздат, Москва.
- [5] Обеницев, А. Л., 1975. Взаимоевяє между гориз остальным и вертикальным Раскрытием трана. Рыбное козяйство, 12: 39—42.

附表 $b/a \subset L/2a \subset L/2b \subset S/b^2$ 数据用表

b/a	L/2a	L/2b	S/b^2	b/a	L/2a	L/2b	S/b^2	b/a	L/2a	L/2b	S/b^2
0,00	2.0000	00	∞	0.34	2.2346	6.5725	9,2399	0.68	2,6629	3.9160	4,6199
0.01	2.0009	200,0900	314.1593	0.35	2.2454	6.4155	8,9759	0.69	2.6770	3.8797	4.5530
0.02	2,0022	100.1100	157.0796	0.36	2.2564	6,2680	8.7266	0.70	2,6911	3.8445	4.4879
0.03	2.0041	66,8 50	104,7197	0.37	2.2675	6.1285	8,4908	0.71	2.7054	3.8104	4,4247
0.04	2.0067	50.1650	78.5398	0.38	2.2786	5.9960	8,2673	0.72	2.7197	3.7773	4.3633
0.05	2,0097	40.1940	62.8318	0.39	2.2899	5.8715	8.0554	0.73	2,7340	3.7452	4.3035
0.06	2.0133	33.554 0	52.3599	0.40	2.3012	5.7580	7.8539	0.74	2.7484	3,7141	4.2454
0.07	2.0173	28.8180	44.8799	0.41	2.3127	5.6410	7.6624	0.75	2.7629	3,6838	4,1888
0.08	2.0217	25.2715	39.2699	0.42	2.3244	5.5340	7.4799	0.76	2.7774	3.6545	4.1337
0.09	2.0266	22,5170	34.9066	0.43	2.3362	5.4330	7.3060	0.77	2.7920	3.6259	4.0799
0,10	2.0318	20,3180	31.4159	0.44	2.3481	5.3365	7.1599	0.78	2.8966	3.5982	4.0277
0.11	2.0374	18.5220	28.5599	0.45	2.3601	5.2445	6,9813	0.79	2,8213	3,5713	3.9767
0.12	2,0434	17.0285	26.1799	0.46	2.3723	5.1570	6,8295	0.80	2.8361	3,5452	3.9269
0.18	2.0497	15.7670	24.1661	0.47	2,3846	5.0735	6.6842	0.81	2.8510	3.5197	3.8785
0.14	2.0563	14.6880	22.4399	0.48	2.3970	4.9937	6.5449	0.82	2.8659	3,4950	3,8312
0.15	2.0632	13.7545	20.9439	0.49	2.4095	4.9174	6.4114	0.83	2,8808	3,4709	3.7851
0,16	2,0703	12.9240	19,6349	0,50	2.4222	4.8444	6.2832	0.84	2,8958	8.4474	3,7399
0.17	2.0776	12.2210	18.4799	0.51	2,4349	4.7743	6.1599	0.85	2,9169	3,4246	3.6959
0.18	2.0852	11.5845	17.4533	0.52	2.4477	4.7071	6.0415	0.86	2.9259	3.4022	3,6530
0.19	2,0931	11,0160	16.5347	0.53	2.4606	4.6427	5.9275	0.87	2,9410	3.3805	3,6110
0.20	2.1011	10.5055	15.7079	0.54	2.4736	4.5807	Б.8177	0.88	2,9562	3.8593	3,5699
0.21	2.1093	10.0445	14.9599	0.55	2,4866	4.5210	5,7119	0,89	2.9714	3,3386	3.5299
0.22	2.1178	9,6260	14.2799	0.56	2.4997	4.4637	5.6099	0.90	2.9866	3.3185	3.4 906
0.23	2.1265	9.2455	13.6591	0.57	2.5129	4.4085	5.5115	0,91	3,0020	3.2989	3.4523
0.24	2,1354	8.8975	13.0899	0.58	2.5261	4.3554	5.4165	0.92	3,0173	3,2797	3.4148
0.25	2,1447	8.5790	12.5664	0.59	2.5395	4.3042	5.3247	0.93	3.0327	3,2609	3.3781
0.26	2.1540	8.2850	12.0830	0,60	2.5529	4.2548	5.2359	0.94	3.0481	3,2426	3.3421
0.27	2,1634	8.0125	11,6355	0.61	2.5664	4.2072	5.1501	0,95	3,0635	3,2248	3,3069
0.28	2.1732	7.7615	11.2199	0.62	2.5799	4.1612	Б.0671	0.96	3,0790	3.2073	3,2725
0.29	2.1830	7.5275	10.8331	0.63	2.5936	4.1168	4.9866	0.97	3.0946	3.1903	3.2387
0.30	2,1930	7,3100	10,4719	0.64	2.6073	4.0739	4.9087	0.98	3.1102	3,1737	3.2057
0,31	2,2032	7.2140	10.1342	0.65	2.6211	4.0324	4.8332	0.99	3.1259	3.1575	3,1733
0.32	2.2135	6.9170	9.8175	0.66	2.6349	3.9923	4,7599	1.00	3.1416	3.1416	3,1416
0.33	2.2240	6.7395	9,5199	0.67	2.6489	3.9585	4,6889	ļ! 	<u> </u>		1

使用说明:

- (1) 2a 与 2b 分別表示拖网的网口宽度与网口高度; L表示拖曳时拖网网口的作业周长, 其数值等于拖网网口拉紧长度乘以拖网网口的水平缩结系数; S表示拖网网口面积。
- (2) 拖网网口部分的水平缩结系数(w₁)尚无确切数据,只能取用统计资料。按全国机轮拖网和机帆船拖树使用经验介绍⁽¹⁾、拖网前端各部分的水平缩结系数在下列范围内变动;

袖网端部 $u_1 = 0.50 - 0.55$, 上中纲部分 $u_1 = 0.45 - 0.50$, 下中纲部分 $u_1 = 0.40 - 0.45$ 。 我们选用网口部分网目的水平缩结系数为 0.45。

- (3) 由 b/a、L/2a、L/2b、 S/b^2 中任意一项,可从相应横行查出其余三项。
- (4) b/a 间隔取用 1/100. 遇数值变化率较大时, 可用內插法求解。
- (5) 算例: 某拖网网口拉紧局长为102.6 米,测得网口高度 2b = 10 米 求: 网口宽度 (2a)、网口面积(8)

解: 选用 u₁ = 0.45

 $L = 102.6 \times 0.45 = 46.17 \text{ }$

L/2b = 46.17/10 = 4.617

由 L/2b 查得: b/a = 0.533(内插法) 网口宽度 2a: 2a = 2b/0.533 = 18.76 米

由表查得: $S/b^2 = 5.89$ (内插法)

岡口面积 S: S=5.89×25=147.25 米*

⁽¹⁾ 厦门水产学院等。1977年。范周祷查。